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Abstract

We perform an experimental evaluation of two pop-
ular cloud-based speech recognition systems. Cloud-
based speech recognition systems enhances Web surfing,
transportation, health care, etc. Using voice com-
mands helps drivers stay connected to the Internet
by avoiding traffic safety risks. The performance of
these type of applications should be robust under
difficult network conditions. User frustration with
network traffic problems can affect the usability of
these applications. We evaluate the performance of two
popular cloud-based speech recognition applications,
Apple Siri and Google Speech Recognition (GSR) under
various network conditions. We evaluate transcription
delay and accuracy of transcription of each application
under different packet loss and jitter values. Results of
our study show that performance of cloud-based speech
recognition systems can be affected by jitter and packet
loss; which are commonly occurring over WiFi and
cellular network connections.

keywords: Cloud Speech Recognition, Quality of
Experience, Software Measurement, Streaming Media,
Real-time Systems.

1 Introduction

Performance evaluation of cloud-based speech recog-
nition systems under different network conditions has
received much less attention than other streaming
systems. Although Apple Siri and Google Speech
Recognition (GSR) are very popular applications that
help users to interact with search engines using voice
commands, an experimental evaluation of these appli-
cations is noticeably missing.

1A brief experimental study on Siri and Google Speech
Recognition is reported in ”Impact of the network performance
on cloud-based speech recognition systems” in which, a solution
that uses network coding to improve the performance of cloud-
based speech recognition applications has been proposed. The
aforementioned paper is published in ICCCN 2015 [4]. In
this paper, we design and implement an extensive experimental
evaluation of Apple Siri and Google Speech Recognition under
different network conditions to compare the performance of these
applications under different conditions.

Delay and accuracy of the voice recognition process
is an important parameter that affects the quality a
user’s experience with cloud-based speech recognition
applications. Streaming voice from the client to the
server and converting it to text are two phases of this
process and should have the minimum possible delay
in order to satisfy the quality of a user’s experience.
Delays of this process should also be consistent under
all different network conditions.

To date, there has not been an extensive evaluation
of how Siri and GSR perform under different network
conditions.

In this paper, we design and implement an experi-
mental evaluation of Siri and GSR. We evaluate these
applications under different packet loss and jitter values
and measure the delay of each under difficult network
conditions. Specifically, we employ two models to eval-
uate the effects of packet loss and jitter, respectively.
Each model is designed to evaluate two factors (jitter or
packet loss) with one blocking variable on the response
variable - delay. The blocking variable is the application
(GSR and Siri), for both of the experiments. An
ANOVA test is used to evaluate effects of packet loss
and jitter for each experiment respectively. Results of
our study show that delays in both applications are
affected by packet loss and jitter.

The remainder of this paper is organized as follows.
In Section II we explore related work. In Section III
we describe our experimental methods. In Section IV
we describe overall results. In Section V we describe
our experimental design and the mathematical model
used to analyze experimental data. Section VI discusses
results. Finally, in Section VII we discusses threats to
validity of our experiment and conclude in Section VIII.

2 Related Work

A measurement study on Google+, iChat, and Skype
was performed by Yang Xu et al. [21]. They explored
the architectural features of these applications. Using
passive and active experiments, the authors unveiled
some performance details of these applications such as
video generation and adaption techniques, packet loss
recovery solutions, and end-to-end delays. Based on



their experiments the server location had a significant
impact on user performance and also loss recovery
in server-based applications. They also argued that
using batched re-transmissions was a good alternative
for real time applications instead of using Forward
Error Correction (FEC) –an error control technique in
streaming over unreliable network connections.

Te-Yuan Huang et al. did a measurement study
on the performance of Skype’s FEC mechanism [14].
They studied the amount of the redundancy added by
the FEC mechanism and the trade-offs between the
quality of the users’ experience and also the resulting
redundancy due to FEC. They tried to find an optimal
level of redundancy to achieve the maximum quality of
the users’ experience.

Te-Yuan Huang et al. also performed a study on
voice rate adaption of Skype under different network
conditions [13]. Results of this study showed that
using public domain codecs was not an ideal choice
for users’ satisfaction. In this study, they considered
different levels of packet loss to run their experiment
and came up with a model to control the redundancy
under different packet loss conditions.

Kuan-Ta Chen et al. proposed a framework for
users’ QoE measurement [6]. Their proposed framework
was called OneClick, and provided a dedicated key
that could be pressed by users whenever they felt
unsatisfied by the network conditions with streaming
media. OneClick was implemented on two applications
–instant messaging applications, and shooter games.

Another framework that quantified the quality of
a user’s experience was proposed by Kuan-Ta Chen
et al [7]. The proposed system was able to verify
participants’ inputs, so it supported crowd-sourcing.
Participation is made easy in this framework, and it
also generates interval-scale scores. They argue that
researchers can use this framework for measuring the
quality of a users’ experience without affecting quality
of the results and achieve a higher level of diversity in
users’ participation while also keeping a cost low.

A delayed-based congestion control is proposed and
developed by Lukasz Budzisz et al. [5]. The proposed
system offers low standing queues and delay in homo-
geneous networks, and balanced delay-based and loss-
based flows in heterogeneous networks. They argue
that this system can achieve these properties under
different loss values, and outperform TCP flows. Using
experiments and analysis, they demonstrate that this
system guarantees aforementioned properties.

Hayes et al. proposed an algorithm which tolerates
non-congestion related packet loss [11]. They proved
experimentally that the proposed algorithm improves
the throughput by 150% under packet loss of 1% and
improves the ability to share the capacity by more than
50%.

Akhshabi et al. proposed an experimental evalu-
ation of rate adaption algorithms for streaming over
HTTP [1, 2]. They experimentally evaluated three
common video streaming applications under a range
of bandwidth values. Results of this study showed
that congestion control of TCP and its reliability
requirement does not necessarily affect the performance
of such streaming applications. Interaction of rate-
adaption logic and TCP congestion control is left as
an open research problem.

Chen et al. experimentally studied performance
of multipath TCP over wireless networks [8]. They
measured the latency resulting from different cellular
data providers. Results of this study show that Multi-
path TCP offers a robust data transport under various
network traffic conditions. Studying the energy costs
and performance trade-offs should be considered as a
possible extension of this study.

Google is currently working on a new transport
protocol for the Internet which is called QUIC(Quick
UDP Internet Connections) [16]. QUIC uses UDP and
solves problems of packet delay under different packet
loss values in TCP connections. QUIC solves this
problem by multiplexing and FEC.

An experimental investigation on the Google Conges-
tion Control (GCC) in the RTCWeb IETF WG was
performed by Cicco et al. [9]. They implemented a
controlled testbed for their experiment. Results of this
experimental study show that the proposed algorithm
works well but it does not utilize the bandwidth fairly
when it is shared by two GCC flows or a GCC and a
TCP flow.

Cicco et al. have also experimentally investigated the
High Definition (HD) video distribution of Akamai [10].
They explained details of Akamai’s client-server proto-
col which implements the quality adaption algorithm.
Their study shows that the proposed technique encodes
any video at five different bit rates and stores all of them
at the server. Server selects the bit rate that matches
the bandwidth that is measured based on the signal
receiving from the cilent. The bitrate level adaptively
changes based on the available bandwidth. Authors of
the paper also evaluated the dynamics of the algorithm
in three scenarios.

Winkler et al. ran a set of experiments to asses
quality of experience on television and mobile appli-
cations [19, 20]. Their proposed subjective experiment
considers different bitrates, contents, codec, and net-
work traffic conditions. Authors of the paper used Sin-
gle Stimulus Continous Quality Evaluation (SSCQE)
and Double Stimulus Impairment Scale (DSIS) on the
same set of materials and compared these methods
and analyzed results of experiments in view of codec
performance.

A mesh-pull-based P2P video streaming using Foun-



tain codes is proposed by Oh et al. [15]. The proposed
system offers fast and smooth streaming with low
complexity. Experimental evaluations show that the
proposed system has better performance than existing
buffer-map-based video streaming systems under packet
loss values. Considering jitter as another important
factor and evaluation of behavior of proposed system
considering jitter values can be a potential extension of
this study.

Application of Fountain Multiple Description Coding
(MDC) in video streaming over a heterogeneous peer to
peer networks is considered by Smith et al. [17]. They
conclude that Fountain MDC codes are favorable in
such cases, but there are some restrictions in real-world
P2P streaming systems.

Finally, Vukobratovic et al. proposed a novel multi-
cast streaming system that is based on Expanding Win-
dow Fountain (EWF) codes for real-time multicast [18].
Using Raptor-like precoding has been addressed as a
potential improvement in this area.

3 Experimental Testbeds

We design and implement our experimental testbed
to study the performance of Apple Siri and GSR under
loss and jitter. Clients transmit voice data through
a network traffic shaper, in which is we change jitter
and packet loss values in the communication network.
We set a bandwidth to 2Mbps which is typical on
3G connections [12]. The server receives voice data,
translates the voice into text, and sends the text
and search results based on the converted text to the
client. The client calculates the delay of the server
response. To calculate the accuracy of transcription we
use Levenshtein distance [22]. Accuracy is measured
as the match percentage of the original string used to
generate the voice and the resulting transcription. The
client uses Wireshark Version 1.12.4 to timestamp the
traffic of voice transmission to and from the server [3].
We developed a Windows application using Visual C#
to timestamp the voice playback. All experiments are
performed on a Windows 7 platform for GSR, and on
iOS 7.0 for Siri. The traffic shaper is a netem box which
runs the Fedora Linux operating system. We ran our
experiment 30 times for each value of loss and jitter and
for each cloud speech recognizer.

3.1 Experimental Testbed for GSR

We use the GSR service available in Google Chrome.
There is also another alternative for using Google voice
recognition. Google offers a voice recognition Web
service that can be used in Windows applications.
Figure 1 shows the architecture of our experimental
setup.

Clients transmit voice packets to the Google server
through the netem box that changes network traffic
performance. We used a recorded voice with a length
of 26.4 seconds for all experiments in order to have
a consistent measurement. Google starts to recognize
voice as soon as it receives the first voice packet, and
sends converted text back to the client. The client
records the time of each packet and also voice trans-
mission time to calculate the transcription time of the
experiment. The client also compares the resulting text
to the original string; which was used to generate the
voice command and calculates transmission accuracy
using the Levenshtein distance [22].

3.2 Experimental Testbed for Siri

The experimental setup for Siri is similar to GSR.
We use an iPhone as the client. A client is connected
to the Internet through a WiFi router then to a netem

box. Here we also used Wireshark to timestamp the
transmission of voice packets and reception of results
from the Siri server. Figure 2 depicts this setup.

4 Overall Results

To investigate the effect of packet loss and jitter on
delay and accuracy, we generate packet loss from 1%
to 5% and jitter from 20 ms to 200 ms respectively
on our testbeds and observe the resulting accuracy
and delay. Siri and GSR both keep 100% accuracy
under high values of packet loss and jitter, so we just
consider delay values in the rest of our study. Overall
results are shown in Figures 3 to 6, where the y axis
displays delay(s), and the x axis displays packet loss
(percentile) and jitter (ms), respectively. There are
increasing trends as packet loss and jitter increases, for
both Siri and GSR. For GSR, an increase of 1 packet
loss unit (percentile), leads to delay increases in the
range of 0-100 ms. An increase of 1 unit (20 ms) in
packet loss leads to increases in delay from 0-100 ms. In
addition, the variance of delay also increases as packet
loss and jitter increase, indicating a trend of instability.
For Siri, the increase in 1 unit (percentile) packet loss
leads to increases in delay of 200 ms; which is worse
than GSR. On the other hand, jitter has less impact on
delay. In addition, the variance of delay is unchanged,
compared to GSR.

5 Experiment Design

We evaluate our results and data using mathematical
models and an ANOVA test. Our response variable is
delay of transcription and our factors are loss and jitter.



Figure 1: Experimental testbed for GSR.

5.1 Model

Since data is collected by varying jitter and packet
loss respectively, we designed two models to assess
the effect of jitter and packet loss on delay. Also,
since data is collected from two applications (i.e., Siri
and GSR), we treat the application as a blocking
variable. Hence, we set up two models for jitter
and packet loss respectively. Each model contains
one factor and one blocking variable. For the first
model, the response variable is delay, the independent
variable is jitter and the blocking variable is application.
Also, to guarantee that the assumptions still hold for
the following ANOVA tests, we apply a logarithmic
transformation on the response variable. Hence, the
first model can be expressed as:

log(yij) = µ+ αi + βj + eij (1)

where α is the jitter, and β represents the application.
Similarly, the second model can be expressed as:

log(yij) = µ+ γi + βj + eij (2)

where γ is the jitter, and β represents the application.
For model 1, the factor (jitter) has 10 alternatives;

which are the jitter duration values ranging from 20 to
200 ms. For model 2, the factor (packet loss) has 5
alternatives; which are the proportion of lost packets
ranging from 1% to 5%. The blocking variable for both
models has 2 alternatives; which are GSR and Siri,
respectively.

5.2 Assumption of Normality Check

Some assumptions should be checked before conduct-
ing the ANOVA tests. In this Section, the interaction
of independent variables, the normality of errors and
the constant variance of errors are tested for normality.

We first test the interaction between factors. In
Figures 7 and 8, the errors (residuals) give us confidence
that they are constantly distributed as the fitted values
change, indicating that the interactions between the
blocking variable and factor are trivial for both jitter
(Eq. 1) and packet loss models (Eq. 2).

Figure 2: Experimental testbed for Siri.

Secondly, the error variance of each model also
appears constant. Figures 9 through 12 show that
errors (residuals) appear constant as the independent
variables (jitter/packet loss and application) change,
indicating that the error of models 1 and 2 are constant.

Finally, figures 13 and 14 show that the error distri-
butions for model 1 and model 2 are normal, indicating
that the assumption of normally distributed errors
holds for both of the models. In summary, all the the
assumptions for conducting an ANOVA test hold for
both models (Eq. 1 and Eq. 2).

Table 1: Statistical Findings of Jitter and Packet Loss

Jitter Df Sum Sq Mean Sq F value Pr(<F)
Jitter 9 1.013 0.113 34.27 <2e-16
App 1 7.77 7.77 2364.79 <2e-16

errors (residuals) 177 0.582 0.003 – –
Packet Loss Df Sum Sq Mean Sq F value Pr(<F)
Packet Loss 4 1.056 0.264 27.66 <2e-16

App 1 17.025 17.025 1782.7 <2e-16
errors (residuals) 135 1.289 0.010 – –

6 Results

Table 1 provides conclusive evidence that roundtrip
delay of GSR and Siri are affected by both jitter (p-
value = 2e-16, f-value =34.27 on 9 df. ) and packet
loss (p-value = 2e-16 , f-value =27.66 on 4 df. ).
Jitter causes packets to arrive out of order and TCP
needs to reorder packets before delivering them to the
application layer. TCP also re-transmits lost packets.
Both packet loss and jitter reduce the voice stream
quality and this affects the performance of the speech
recognition.

The application, on the other hand, affects the delay
much more seriously. Specifically, the f-values of
application for jitter and packet loss are 1782.7 and
2364.79 on 1 df., respectively. To test the difference
between Siri and GSR on delay, we also employ a Walch
t-test to compare the samples obtained from Siri and
GSR. The mean difference between Siri and GSR is
1.666s, with 95% confidence interval from -1.736 to -
1.600, (p-value < 2.2e-16). This suggests that there



Figure 3: Impact of
packet loss on delay of
GSR

Figure 4: Impact of jitter
on delay of GSR

Figure 5: Impact of
packet loss on delay of
Siri

Figure 6: Impact of jitter
on delay of Siri

Figure 7: Jitter: Fitted
Values vs. Errors (Resid-
uals)

Figure 8: Packet Loss:
Fitted Values vs. Errors
(Residuals)

Figure 9: Jitter: Fitted
Values vs. Errors (Resid-
uals)

Figure 10: Application
(Jitter): Fitted Values
vs.Errors (Residuals)

Figure 11: Packet Loss:
Fitted Values vs.Errors
(Residuals)

Figure 12: Application
(Packet Loss): Fitted
Values vs.Errors (Resid-
uals)

Figure 13: Normality of
Jitter

Figure 14: Normality of
Packet Loss



exists a statistically significant difference between GSR
and Siri. By examining the response variable for each
application separately, Siri causes much more delay
than GSR. This is because the algorithm employed by
Siri keeps the resulting text accurate by starting the
speech recognition process just after receiving the voice
date. That means Siri needs to receive the entire voice
stream before starting to generate the text. As a result,
this increases the delay in processing the whole text and
accounts for the majority of the total delay. GSR, on
the other hand, keeps the result accurate by adaptively
adjusting the transport and application layers and so it
offers less delay even under high values of packet loss
and jitter compared to Siri.

7 Threats to Validity

7.1 Threats to Internal Validity

One of the possible threats to internal validity is the
hardware limitations of the devices running GSR and
Siri. More specifically, the processing speed of memory
and CPU will affect the processing of data streams in
a PC. Another possible threat is the status of the PC.
For example, when the OS is busy, it does not have
enough time to respond to the interruptions generated
from GSR or Siri, hence generating and thus affecting
delay.

7.2 Threats to External Validity

All of the experiments were conducted in our lab
and through our campus network. It is likely that
the configuration of our campus network is different
from other networks, such as firewalls and TCP/UDP
controls. Hence, the conclusion obtained from the
experiment cannot be generalized to common network
environments. In addition, the available bandwidth
of different regions in United States is different. It is
possible that this diversity affects the conclusion that
it cannot be applied to the other regions in United
States. Finally, the sample is small (the evaluation is
run on one desktop in a laboratory setting). A larger
scale experiment running on more desktops, as well as
laptops and smart phones, will lessen external threats.

7.3 Threats to Construct Validity

Since the delay generated by the Internet (e.g., router,
DNS, etc.) is complicated and unpredictable, it is
hard to say the extent to which packet loss and jitter
impact delay. Also, the transportation and routing
layers employ self-adaptive mechanisms to adjust the
performance of specific applications, e.g., GSR and
Siri. In the end, both the jitter and the packet loss
are generated by a specific program (i.e., simulated),

rather than real network conditions. It is hard to know
whether the simulated impact has the same effects of
real jitter or packet loss.

8 Conclusions and Future Work

We designed and implemented experimental evalua-
tions of Siri and GSR. Using the collected data from
our experiments, we designed two models to evaluate
the effects of jitter and packet loss separately. After
conducting ANOVA tests for each experiment, we found
that the effects of packet loss and jitter on delay are
statistically significant but the impact is not important
compared to the one that comes from the application,
because from the table we can see that the application
generated most of the impact. In addition, we found
that GSR performs better than Siri when measuring
delay.

Delay of both applications is affected by packet loss
and jitter. In order to design and implement real-
time cloud speech recognition applications for more
critical tasks, there should be mechanisms to measure
loss/jitter tolerant systems. Network coding is a
possible solution which can be used to reduce the
effect of packet loss and jitter [4, 15, 17, 18]. Using
TCP keeps these applications accurate under packet
loss and jitter values, but as we saw in our results, it
affects the roundtrip delay. By using UDP and network
coding, we can keep the system accurate under different
values of jitter and packet loss while we reduce the
resulting delay. Future cloud based speech recognition
applications that use cellular networks are still required
to overcome this problem; which is due to the presence
of jitter from packet transmission over different paths.

This experiment can also be extended by running Siri
and GSR over different cellular networks, and adding
the celluar data provider as another blocking variable.

Running the experimental setup over a wide ge-
ographical range of clients and also using different
cellular data providers can result in more accurate
results. Considering clients with a diversity of hardware
and software configurations can be another extension
for this research.
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