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Abstract

Cloud-based speech recognition systems enhance Web
surfing, transportation, health care, etc. For example, using
voice commands helps drivers search the Internet without
affecting traffic safety risks. User frustration with network
traffic problems can affect the usability of these applications.
The performance of these type of applications should be robust
in difficult network conditions. We evaluate the performance
of several client-server speech recognition applications, under
various network conditions. We measure transcription delay
and accuracy of each application under different packet loss
and jitter values. Results of our study show that performance
of client-server speech recognition systems is affected by jitter
and packet loss, which commonly occur in WiFi and cellular
networks.

An experimental study on client-server speech recognition
applications is reported in Impact of the network performance
on cloud-based speech recognition systems, in which a solution
that uses network coding to improve the performance of
cloud-based speech recognition applications has been proposed.
The aforementioned paper is published in ICCCN 2015 [8].
Designing and implementing of experimental testbeds by
using TCP and UDP connections and also designing and
implementing another testbed that uses fountain codes on UDP
connection has been introduced in the paper. In this paper, we
design and implement an extensive experimental evaluation of
five client-server speech recognition applications to compare
the performance of these applications under different network
conditions.

Key Words: Cloud Speech Recognition, Quality of
Experience, Software Measurement, Streaming Media, Real-
time Systems.

1 Introduction

Performance evaluation of cloud-based speech recognition
systems under different network conditions has received much
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less attention than other streaming systems. Although Apple
Siri and Google Speech Recognition (GSR) are popular
applications that help users to interact with search engines
using voice commands, an experimental evaluation of these
applications is noticeably missing.

Delay and accuracy of the voice recognition process is
an important parameter that affects the quality of a user’s
experience with cloud-based speech recognition applications.
Streaming voice from the client to the server and converting it
to text are two phases of this process and should have the low
delay and high accuracy in order to satisfy the quality of a user’s
experience. Delays of this process should also be consistent
under all different network conditions.

In this paper, we describe the design and implementation
of an experimental evaluation of Siri and GSR. We also
evaluate three client-server speech recocgintion systems using
TCP, UDP, and network coding over UDP. We evaluate these
applications under different packet loss and jitter values and
measure the delay and accuracy of each under different network
conditions. Specifically, we employ four statistical models to
evaluate the effects of packet loss and jitter, respectively. Each
model is designed to evaluate two factors (jitter and packet loss)
with two blocking variables on the response variable - delay
and accuracy. The blocking variable is the application for all
experiments. The ANOVA test is used to evaluate effects of
packet loss and jitter for each experiment respectively. Results
of our study show that delays in all applications are affected by
packet loss and jitter. Results also show that the accuracy of
three applications is affected by packet loss and jitter.

The remainder of this paper is organized as follows: In
Section II we explore related work. In Section III we describe
our experimental methods. In Section IV we describe overall
results. In Section V we describe our experimental design
and the mathematical model used to analyze experimental
data. Section VI discusses results. Finally, in Section VII we
discusses threats to validity of our experiment and conclude in
Section VIII.

2 Related Work

Yang Xu et al. performed a measurement study on Google+,
iChat, and Skype [31]. They explored the architectural features
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of these applications. Using passive and active experiments, the
authors unveiled some performance details of these applications
such as video generation and adaption techniques, packet loss
recovery solutions, and end-to-end delays. Based on their
experiments the server location had a significant impact on user
performance and also loss recovery in server-based applications.
They also argued that using batched re-transmissions was a good
alternative for real time applications instead of using Forward
Error Correction (FEC) –an error control technique in streaming
over unreliable network connections.

Te-Yuan Huang et al. did a measurement study on the
performance of Skype’s FEC mechanism [21]. They studied the
amount of the redundancy added by the FEC mechanism and
the trade-offs between the quality of the users’ experience and
also the resulting redundancy due to FEC. They tried to find an
optimal level of redundancy to achieve the maximum quality of
the users’ experience.

Te-Yuan Huang et al. also performed a study on voice
rate adaption of Skype under different network conditions [20].
Results of this study showed that using public domain codecs
was not the ideal choice for users’ satisfaction. In that
study, they considered different levels of packet loss in their
experiments and created a model to control the redundancy
under different packet loss conditions.

Kuan-Ta Chen et al. proposed a framework for user QoE
measurement [11]. Their proposed framework, OneClick,
provided a dedicated key that could be pressed by users
whenever they felt unsatisfied by the network conditions
with streaming media. OneClick was implemented on two
applications – instant messaging applications and shooter
games.

Another framework that quantified the quality of a user’s
experience was proposed by Kuan-Ta Chen et al [12]. The
proposed system was able to verify participants’ inputs, so
it supported crowd-sourcing. Participation is made easy
in this framework. The framework generates interval-scale
scores. They argue that researchers can use this framework for
measuring the quality of a users’ experience without affecting
quality of the results and achieve a higher level of diversity in
users’ participation while also keeping cost low.

Budzisz et al. proposed and developed a delayed-based
congestion control system [10]. The proposed system offers
low standing queues and delay in homogeneous networks, and
balanced delay-based and loss-based flows in heterogeneous
networks. They argue that this system can achieve these
properties under different loss values, and outperform TCP
flows. Using experiments and analysis, they demonstrate that
this system guarantees aforementioned properties.

Hayes et al. proposed an algorithm which tolerates non-
congestion related packet loss [18]. They proved experimentally
that the proposed algorithm improves the throughput by 150%
under packet loss of 1% and improves the ability to share the
capacity by more than 50%.

Akhshabi et al. proposed an experimental evaluation of
rate adaption algorithms for streaming over HTTP [4, 5].

They experimentally evaluated three common video streaming
applications under a range of bandwidth values. Results of this
study showed that congestion control of TCP and its reliability
requirement does not necessarily affect the performance of such
streaming applications. Interaction of rate-adaption logic and
TCP congestion control is left as an open research problem.

Chen et al. experimentally studied performance of multipath
TCP over wireless networks [13]. They measured the latency
resulting from different cellular data providers. Results of this
study show that Multipath TCP offers a robust data transport
under various network traffic conditions. Studying the energy
costs and performance trade-offs should be considered as a
possible extension of this study.

Google is currently working on a new transport protocol
for the Internet called QUIC (Quick UDP Internet
Connections) [25]. QUIC uses UDP and solves problems
of packet delay under different packet loss values in TCP
connections. QUIC solves this problem by multiplexing and
FEC.

An experimental investigation on the Google Congestion
Control (GCC) in the RTCWeb IETF WG was performed by
Cicco et al. [14]. They implemented a controlled testbed for
their experiment. Results of this experimental study show that
the proposed algorithm works well but it does not utilize the
bandwidth fairly when it is shared by two GCC flows or a GCC
and a TCP flow.

Cicco et al. have also experimentally investigated the High
Definition (HD) video distribution of Akamai [15]. They
explained details of Akamai’s client-server protocol which
implements the quality adaption algorithm. Their study shows
that the proposed technique encodes any video at five different
bit rates and stores all of them at the server. The server selects
the bit rate that matches the bandwidth that is measured based on
the signal received from the cilent. The bitrate level adaptively
changes based on the available bandwidth. Authors of the paper
also evaluated the dynamics of the algorithm in three scenarios.

Winkler et al. ran a set of experiments to asses quality of
experience on television and mobile applications [28, 29]. Their
proposed subjective experiment considers different bitrates,
contents, codec, and network traffic conditions. Authors of
the paper used Single Stimulus Continous Quality Evaluation
(SSCQE) and Double Stimulus Impairment Scale (DSIS) on the
same set of materials and compared these methods and analyzed
results of experiments in view of codec performance.

A mesh-pull-based P2P video streaming using Fountain
codes is proposed by Oh et al. [24]. The proposed
system offers fast and smooth streaming with low complexity.
Experimental evaluations show that the proposed system
has better performance than existing buffer-map-based video
streaming systems under packet loss values. Considering jitter
as another important factor and evaluation of behavior of the
proposed system considering jitter values can be a potential
extension of this study.

Application of Fountain Multiple Description Coding (MDC)
in video streaming over a heterogeneous peer to peer network is
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considered by Smith et al. [26]. They conclude that Fountain
MDC codes are favorable in such cases, but there are some
restrictions in real-world P2P streaming systems.

Finally, Vukobratovic et al. proposed a novel multicast
streaming system that is based on Expanding Window Fountain
(EWF) codes for real-time multicast [27]. Using Raptor-like
precoding has been addressed as a potential improvement in this
area.

3 Experimental Testbeds

We design and implement our experimental testbed to study
the performance of cloud-based speech recognition systems
under loss and jitter. Clients of such systems transmit voice
data through a network traffic shaper, where we change jitter
and packet loss values in the communication network. We set a
bandwidth to 2Mbps which is typical on 3G connections [19].
The server receives voice data, translates the voice into text,
and sends the text and search results based on the converted
text to the client. The client calculates the delay of the server
response. To calculate the accuracy of transcription we use
Levenshtein distance [32]. Accuracy is measured as the match
percentage of the original string used to generate the voice and
the resulting transcription. The client uses Wireshark Version
1.12.4 to timestamp the traffic of voice transmission to and
from the server [6]. We developed a Windows application using
Visual C# to timestamp the voice playback. All experiments
are performed on a Windows 7 platform for GSR, and on iOS
7.0 for Siri. The traffic shaper is a netem box which runs the
Fedora Linux operating system. We ran our experiment 30
times for each value of loss and jitter and for each cloud speech
recognizer.

3.1 Experimental Testbed for GSR

We use the GSR service available in Google Chrome. There
is also another alternative for using Google voice recognition.
Google offers a voice recognition Web service that can be used
in Windows applications. Figure 1 shows the architecture of our
experimental setup.

Clients transmit voice packets to the Google server through
the netem box that changes network traffic performance. We
used a recorded voice with a length of 26.4 seconds for all
experiments in order to have a consistent measurement. Google
starts to recognize voice as soon as it receives the first voice
packet, and sends converted text back to the client. The client
records the time of each packet and also voice transmission time
to calculate the transcription time of the experiment. The client
also compares the resulting text to the original string which was
used to generate the voice command and calculates transmission
accuracy using the Levenshtein distance [32].

3.2 Experimental Testbed for Siri

The experimental setup for Siri is similar to GSR. We use an
iPhone as the client. A client is connected to the Internet through

Figure 1: Experimental testbed for GSR.

a WiFi router then to a netem box. Here we also used Wireshark
to timestamp the transmission of voice packets and reception of
results from the Siri server. Figure 2 depicts this setup.

3.3 Experimental Testbed for Nuance Dragon

We consider key characteristics of Siri and GSR to design
an in-lab testbed that shows the same behavior. Siri and GSR
both use TCP transport protocol [7, 17]. To replicate speech
recognition algorithms we used Nuance technology which uses
the same algorithms to convert the voice to the text as Siri [1, 3].
Nuance technology is available as Dragon Naturally Speaking
software [2].

Our testbed consists of a client that is connected to a speech
recognition server through netem. Client streams the voice over
a TCP connection that goes through the netem box. The server
starts to convert voice to the text as soon as it receives the first
voice packet. The server sends the resulting text back to the
client. We record the accuracy of the returning text and the
round trip time of the process to evaluate the performance of
the system. We repeat the experience 30 times for each traffic
setup. Figure 3 shows the architecture of the TCP streaming
testbed.

The program timestamps when the voice playback starts and
finishes. We call these timestamps fct and lct (first client
transfer and last client transfer), respectively. Network traffic
conditions are controlled by netem. A logger on the server is
responsible for keeping the timestamp of packets and storing
the first and last timestamps in a file. We call these timestamps
fsr and lsr (first server packet received and last server packet
received), respectively. In order to timestamp the transcription
delay, we developed a text editor to collect the Dragon’s output
and timestamp the time when the first and last character was
created by Dragon. We call these timestamps ffr and lfr (first
text file character received and last text file character received),
respectively. Every time a new character is created by dragon,
our text editor sends that character to the sender and a program
on the sender collects the received characters and stamps the
time of the first and the last received character. We call these
timestamps fcr, and lcr (first client received and last client
received), respectively. Figure 4 shows the data flow from the
client to the server and also the data flow from Dragon’s output
to the client. This figure also shows the relative order of the
timestamp variables used for our evaluation.
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Figure 2: Experimental testbed for Siri.

Figure 3: Experimental testbed for TCP.

The recorded timestamps for each round of the experiment
monitor the behavior of different parts of the testbed. (ffr -
fsr) represents response time of the Dragon, (lfr - fsr) represents
the total time of the speech recognition on the server, (lcr - fct)
represents the total time of each round of experiment. We used
(lcr - lct) as the delay of the remote speech recognition system.

3.4 Experimental Testbed for UDP

TCP waits for each packet to be received and retransmits
lost packets. Reliable transmission is not necessarily a good
choice for real-time communications, in which transmission
delay reduces the feeling of interactivity. UDP is a good
alternative when the application tolerates moderate packet loss.
We changed our TCP testbed to send UDP packets to observe
the effect of packet loss and jitter on delay and accuracy of the
speech recognition software. The UDP testbed has the same
architecture as TCP, but the streaming part of the testbed has
been changed to use UDP packets. We ran the UDP testbed
with the same conditions as the TCP.

3.5 Experimental Testbed for UDP with Network Coding

We implemented a P2P streaming system using a linear
fountain and replaced it with the standard UDP stream. Other
parts of the testbed are the same.

3.5.1 Fountain Codes

Fountain codes are used in erasure channels such as the
Internet. Channels with erasure transmit files in multiple small
packets and each packet is either received without error or is
lost [23]. Coded packets sent to the receiver are combinations

Figure 4: Timestamp Variables.

of original packets. Once the receiver receives enough coded
packets it is able to decode and extract the original packets.
Figure 5 illustrates the mechanism behind the fountain codec
that is used in our solution [26]. Sender takes a group of
packets, creates a number of coded packets, and sends them to
the receiver along with information needed for their decoding.
The receiver extracts the original packets after receiving enough
coded packets by solving a linear equation created by the
received information.

3.5.2 Fountain Encoder

The Fountain encoder generates an unlimited number of
encoded packets using original ones. In order to decode packets
of a stream, we group every X consecutive original packets
together. Fountain encoder generates enough number of coded
packets using original packets of the group, and we will find this
number later in this section. Each encoded packet is a bit-wise
sum of packets of group:

EPn = ∑
X
x=1 PxGxn, (1)

where Gxn is a random binary number consisting of X bits
and P’s are original packets. The sum operation is done by
XOR-ing packets. The resulting packet is sent to the receiver
and Gxn is also put in the header for the decoder to be able
to extract original packets after receiving enough number of
coded packets. Figure 6 demonstrates the process of coding
and sending packets over a lossy network. Grey shaded packets
are not received. The sender creates and sends n coded packets
from each group. In order to have enough information to extract
the original packets, n should be greater than X. The number of
coded packets required to be received by the receiver to have
probability 1-δ of decoding success is ≈ X+log2 1/δ [23].

3.5.3 Fountain Decoder

With enough number of received packets, the receiver is able
to extract original packets. Lets say there are X original packets
and the receiver has received K packets. The binary numbers
that we used in our encoder make a K-by-X matrix. If K<X, the
decoder does not have enough information to extract the original
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Figure 5: Coding and sending packets over a lossy network [8].

Figure 6: The generator matrix of the linear code [8].

packets. If k=X, it is possible to recover packets. If the resulting
K-by-K matrix is invertible, the decoder is able to calculate the
inverse of G−1 by Gaussian elimination and recover

tx = ∑
K
k=1 tkG−1

kx . (2)

The probability that a random K-by-K matrix is invertible is
0.289 for any K greater than 10 [23]. The decoder should
receive extra packets to increase the probability of having
an inversible matrix. The time complexity of encoding and
decoding of linear Fountain codes are quadratic and cubic in
number of encoded packets but this is not important when
working with packets less than a thousand [23]. Using faster
versions of fountain codes, like the LT code or Raptor codes
offers less complexity [16].

4 Overall Results

To investigate the effect of packet loss and jitter on delay and
accuracy, we generate packet loss from 1% to 5% and jitter from
20 ms to 200 ms respectively on our testbeds and observe the
resulting accuracy and delay. Siri and GSR both keep 100%
accuracy under high values of packet loss and jitter, so we just
consider accuracy values for the other three testbeds. The effect
of packet loss and jitter on roundtrip delay of applications is
shown in Figures 7 to 16, where the y axis displays delay(s),
and the x axis displays packet loss (percentile). and jitter (ms),
respectively. There are increasing trends as packet loss and
jitter increases, for all applications. For GSR, an increase of
1 packet loss unit (percentile), leads to delay increases in the
range of 0-100 ms. An increase of 1 unit (20 ms) in jitter

leads to increases in delay from 0-100 ms. In addition, the
variance of delay also increases as packet loss and jitter increase,
indicating a trend of instability. For Siri, the increase in 1 unit
(percentile) packet loss leads to increases in delay of 200 ms;
which is worse than GSR. On the other hand, jitter has less
impact on delay. In addition, the variance of delay is unchanged,
compared to GSR. For Dragon under TCP, packet loss and jitter
both affect the roundtrip delay. Variance of delay increases as
jitter increases, indicating a trend of instability in the case of
high values of jitter. For Dragon under UDP, packet loss does
not affect the roundtrip delay, but variance of delay increases as
we increase the packet loss. Jitter, on the other hand, affects the
roundtrip delay of Dragon testbed under UDP. Variance of delay
also increases with increasing jitter. Figures 19 and 22 show
that using the network coding with UDP improves the accuracy
of UDP when packet loss increases. Comparing the results
from Figure 18, we can say that the accuracy of Dragon under
UDP with using Fountain codes has been improved by about
30% in the existence of high values of packet loss. Comparing
the results from Figures 22 and 20 shows that the accuracy of
Dragon under UDP improves under different values of jitter,
if we apply Fountain coding. Results show that the accuracy
of Dragon has been improved to 85% with 200ms jitter, and
this value is 30% when we do not use Fountain coding. From
Figures 17 and 20, we can see the effect of increasing packet
loss and jitter on the accuracy of Dragon under TCP. Accuracy
of Dragon under TCP decreases by 15% when jitter is 200ms.
Figure 20 also shows that the accuracy does not change when
jitter is between 0 to 100ms and after this point, system starts
to lose the accuracy. Variances of accuracy also start to increase
from this point.

5 Experiment Design

5.1 Model

Since our data is collected by varying jitter and packet
loss respectively, we designed four statistical models to assess
the effect of jitter and packet loss on delay and accuracy,
respectively. Also, since our data is collected from five
applications (i.e. Siri, GSR, fontain, TCP and UDP), we take
the application as a blocking variable. Each model contains
one factory and one blocking variable. For the first model,
the response variable is delay, the independent variable is jitter
and the blocking variable is application. Also, to guarantee the
assumptions still hold for the following ANOVA tests, we apply
log transformation on the response variable. Hence, the first
model can be expressed as:

log(ydi j) = µ +αi +β j + ei j (3)

where α is jitter, β is application.
For the second model, the response variable is delay, the

independent variable is packet loss and the blocking variable
is application. The model can be expressed as:
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Figure 7: Impact of packet
loss on delay of
GSR

Figure 8: Impact of packet
loss on delay of
Siri

Figure 9: Impact of packet
loss on delay of
Dragon with TCP

Figure 10: Impact of packet
loss on delay
of Dragon with
UDP

Figure 11: Impact of packet
loss on delay
of Dragon with
UDP by using
network coding

Figure 12: Impact of jitter
on delay of GSR

Figure 13: Impact of jitter
on delay of Siri

Figure 14: Impact of jitter
on delay of
Dragon with
TCP

Figure 15: Impact of jitter
on delay of
Dragon with
UDP

Figure 16: Impact of jitter
on delay of
Dragon with
UDP by using
network coding

Figure 17: Impact of packet
loss on accuracy
of Dragon with
TCP

Figure 18: Impact of packet
loss on accuracy
of Dragon with
UDP
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Figure 19: Impact of packet
loss on accuracy
of Dragon with
UDP by using
network coding

Figure 20: Impact of jitter
on accuracy of
Dragon with
TCP

Figure 21: Impact of jitter
on accuracy of
Dragon with
UDP

Figure 22: Impact of jitter
on accuracy of
Dragon with
UDP by using
network coding

log(ydi j) = µ + γi +β j + ei j (4)

where γ is packet loss, β is application.
For the third model, the response variable is accuracy, the

independent variable is jitter and the blocking variable is
application. The model can be expressed as:

log(yai j) = µ +αi +β j + ei j (5)

where α is jitter, β is application.
For the fourth model, the response variable is accuracy, the

independent variable is packet loss and the blocking variable is
application. The model can be expressed as:

log(yai j) = µ + γi +β j + ei j (6)

where γ is packet loss, β is application.
For model 3, the factor (jitter) has 10 alternatives, which are

the jitter duration ranging from 20 to 200 ms. For model 4, the
factor (packet loss) has 5 alternatives, which are the proportion
of lost packet ranging from 1% to 5%. The blocking variable for
both models 4 and 3 have 5 alternatives, which are SiRi, GSR,
fontain, TCP and UDP, respectively. For model 5, the factor
(jitter) has 10 alternatives, which are the jitter duration ranging
from 20 to 200 ms. For model 6, the factor (packet loss) has
5 alternatives, which are the proportion of lost packet ranging
from 1% to 5%. The blocking variable for both models 6 and
5, however, have only three alternatives, which are fontain, TCP
and UDP, respectively. The reason is that for SiRi and GSR,
the accuracy is always 100%, no matter how the factor changes.
Therefore, we ignore them for accuracy.

5.2 Assumptions

To guarantee the effectiveness of ANOVA test, some
assumptions should be checked before conducting the ANOVA
tests. In this paper, the interaction of dependent variables, the
normality of errors and the constant variance of errors are tested.
All of these assumptions hold for an effective ANOVA test on

the collected data and models (Eq. 3, 4, 5, and 6). Hence, we
can conduct ANOVA tests, whose result will be shown in the
next section.

Table 1: Statistical Findings of Effect on Delay: Jitter and
Packet Loss

Jitter Df Sum Sq Mean Sq F value Pr(<F)
Jitter 9 2.30 0.255 29.97 <2e-16
App 4 49.02 12.255 1437.63 <2e-16

Residuals 905 7.71 0.009 – –
Packet Loss Df Sum Sq Mean Sq F value Pr(<F)
Packet Loss 4 1.87 0.467 60.17 <2e-16

App 4 40.04 10.009 1290.49 <2e-16
Residuals 535 4.15 0.008 – –

Table 2: Statistical Findings of Effect on Accuracy: Jitter and
Packet Loss

Jitter Df Sum Sq Mean Sq F value Pr(<F)
Jitter 9 29.16 3.24 62.84 <2e-16
App 2 23.94 11.972 232.21 <2e-16

Residuals 920 47.42 0.052 – –
Packet Loss Df Sum Sq Mean Sq F value Pr(<F)
Packet Loss 4 0.7102 0.1775 53.52 <2e-16

App 2 1.0846 0.5423 163.49 <2e-16
Residuals 299 0.9918 0.0033 – –

6 ANOVA: Results and Conclusions

As can be seen in Table 1 there is conclusive evidence
that delay is affected by both jitter and packet loss. More
specifically, the f-values of jitter and application are 29.97 (df.
= 9, p-value = 2e-16) and 1437.63 (df. = 4, p-value = 2e-16)
while the f-values of packet loss and application are 60.17 (df.
= 4, p-value = 2e-16) and 1290.47 (df. = 4, p-value = 2e-16),
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respectively. The underlying reasons are as follows. As we
mentioned before, jitter causes packets to arrive out of order
and TCP needs to reorder packets before delivering them to
the application layer. TCP also re-transmits lost packets. Both
packet loss and jitter reduce the voice stream quality and this
affects the performance of the speech recognition. On the other
hand, the application affects the delay more seriously. The
f-values of application for jitter and packet loss are 1437.63
and 1290.47, respectively. In other words, Siri causes much
more delay than GSR. This is because Siri generates accurate
transcription by starting the speech recognition process just after
receiving the whole voice. That means Siri needs to receive the
whole stream before starting to generate the text. That increases
the delay in processing the whole text and accounts for the
majority of total delay. GSR, on the other hand, keeps the result
accurate by interaction between the transport and application
layers and so it offers less delay even under high values of packet
loss and jitter, compared to Siri.

As can be seen in Table 2, there is conclusive evidence that
accuracy is affected by both jitter (p-value = 2e-16, f-value
=62.84 on 9 df. ) and packet loss (p-value = 2e-16 , f-value
=53.52 on 4 df. ). More specifically, the f-values of jitter and
application are 62.84 (df. = 9, p-value = 2e-16) and 232.21
(df. = 4, p-value = 2e-16) while the f-values of packet loss and
application are 53.52 (df. = 4, p-value = 2e-16) and 163.49 (df.
= 4, p-value = 2e-16), respectively. Interestingly, for accuracy,
the impact of jitter and packet loss begin is greater than that for
delay. However, their impacts are still less than application.

7 Threats to Validity

7.1 Conclusion Validity

Conclusion validity makes sure that there is a statistical
relationship between the experiment and results, with a given
significance [30]. A perfect experiment would be conducted
in randomly selected locations around the world and using
randomly selected Internet providers. The experiment should
repeat many times in each location. Our testbeds for Apple
Siri and Google Speech Recognition were limited to a campus
network, thus limiting the statistical strength of the results.
Selecting the location and Internet provider randomly, as well
as increasing the number of sites can increase the conclusion
validity.

7.2 Internal Validity

Internal Validity refers to the causal effects between
independent and dependent variables, and for any relationship
to exist, we should make sure that it is not as a result of
a factor that there is no control over or that it has not been
measured [30]. One of the possible threats to internal validity
is the hardware limitations of the devices running GSR and
Siri. More specifically, the processing speed of memory and
CPU will affect the processing of data streams in a PC. Another
possible threat is the status of the PC. For example, when the

OS is busy, it does not have enough time to respond to the
interruptions generated from GSR or Siri, hence generating and
thus affecting delay.

7.3 Construct Validity

Construct validity refers to the relationship between theory
and study. Experiments need to be set up such that to the
highest degree possible, they are representative of the theory
under test. The experiments reflect the construct of cause and
results reflect the construct of effects well [30]. Since the delay
generated by the Internet (e.g., router, DNS, etc.) is complicated
and unpredictable, it is hard to say the extent to which packet
loss and jitter impact delay. Also, the transportation and
routing layers employ self-adaptive mechanisms to adjust the
performance of specific applications, e.g., GSR and Siri. In the
end, both the jitter and the packet loss are generated by a specific
program (i.e., simulated), rather than real network conditions.
It is hard to know whether the simulated impact has the same
effects of real jitter or packet loss.

7.4 External Validity

The external validity is all about generalization. Can we
generalize the result of the treatment outside the scope of our
study in case of a causal relationship between cause and the
construct [30]? All of the experiments were conducted in our
lab and through our campus network. It is likely that the
configuration of our campus network is different from other
networks, such as firewalls and TCP/UDP controls. Hence, the
conclusion obtained from the experiment cannot be generalized
to common network environments. In addition, the available
bandwidth of different regions in United States is different.
It is possible that this diversity affects the conclusion that it
cannot be applied to the other regions in United States. Finally,
the sample is small (the evaluation is run on one desktop in
a laboratory setting). A larger scale experiment running on
more desktops, as well as laptops and smart phones, will lessen
external threats.

8 Conclusions and Future Work

We designed and implemented experimental evaluations of
Siri and GSR, and Dragon. Using experiment data, we designed
four models to evaluate the effects of jitter and packet loss
separately. After conducting ANOVA tests for each experiment,
we found that the effects of packet loss and jitter on delay are
statistically significant but the impact is not important compared
to the one that comes from the application, because from the
tables we can see that the application generated most of the
impact. In addition, we found that GSR performs better than
Siri in respect to delay. Results from the Dragon testbeds
shows that the effects of packet loss and jitter on delay and
also accuracy are statistically significant but the impact is not
important compared to the one that comes from the application.
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Statistical findings of effect of jitter and loss on the accuracy and
delay show that the application generated most of the impact.

Delay of all applications is affected by packet loss and
jitter. In order to design and implement real-time cloud speech
recognition applications for more critical tasks, there should be
mechanisms to measure loss/jitter tolerant systems. Network
coding is a possible solution to reduce the effect of packet loss
and jitter [8, 24, 26, 27]. Using TCP keeps these applications
accurate under packet loss and jitter values, but as we saw
in our results, it affects the roundtrip delay. By using UDP
and network coding, we can keep the system accurate under
different values of jitter and packet loss while we reduce
the resulting delay. Future cloud based speech recognition
applications that use cellular networks are still required to
overcome this problem; which is due to the presence of jitter
from packet transmission over different paths.

This experiment can also be extended by running Siri and
GSR over different cellular networks, and adding the celluar
data provider as another blocking variable.

Running the experimental setup over a wide geographical
range of clients and also using different cellular data providers
can result in more accurate results. Considering clients with
a diversity of hardware and software configurations can be
another extension for this research.
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