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Abstract—Users and content providers want websites to load
quickly. A widely used web performance metric that rewards
both the early appearance of content and the timely completion
of page load is the Speed Index (SI). Lower SI values correspond
to higher user satisfaction, which makes reducing page SI an
important goal.

In this paper, we observe that all images on a webpage
are not created equal and indeed vary considerably along a
metric we dub image density, or the ratio of byte weight to
pixel size. Variation in image density creates opportunities to
prioritize lower density images to reduce page SI by displaying
more pixels sooner for every loaded byte. We define Object
Density Distribution (ODD) – a new webpage characterization
metric. To understand the potential for image prioritization, we
characterize ODD of existing webpages, their ODDness if you will,
and show that ODD skewness and kurtosis indicate meaningful
prioritization opportunities. To understand the effectiveness of
image prioritization, we propose a URL-based prioritization
mechanism and measure its performance across 20 test pages
loaded from the Apache, NGINX, and Caddy servers. Our
results show SI improvement over 40% in some cases and mean
improvement of 5.7%. These SI improvements and the simplicity
of our prioritization method create a compelling case for the
adoption of our method by content distribution networks (CDNs)
and future browser implementations.

Index Terms—web performance, speed index, content delivery

I. INTRODUCTION

Users and content providers want their websites to load
and display quickly. Static resources, such as HTML,
JavaScript (JS), Cascading Style Sheet (CSS), and image files,
needed to render website views load from content delivery net-
work (CDN) servers. As a result, user experience, quantified
by web performance metrics such as page load times (PLT)
and Speed Index (SI), depends on the fast acquisition of hosted
resources.

Although research on web performance has helped to make
a more efficient use of available network resources, for exam-
ple by prioritizing CSS and JS objects and eliminating Head
of Line (HoL) blocking [1], network delay remains difficult to
mask. One persistent challenge is the delay of loading images,
which depends on transport layer throughput, and so both
bandwidth and latency. The introduction of web metrics such
as SI showed that the order of object appearance during a page
load matters to user experience, which led to prioritization of
above-the-fold (ATF) objects to accelerate their display, even
though page load time (PLT) remains unchanged [2].

Currently, browsers request images in order of their embed-
ding in the base HTML, or in the order of their placement on
the page. This top to bottom order makes sense in that it leads
the browser to request ATF images first. With the deployment
of HTTP/2 implementations in browsers and servers there
is potential to prioritize images with respect to each other
to force a strict priority of ATF images. Chrome does just
that and initially loads images with the Net:Lowest priority,
but upgrades to Net:Medium priority those images that are
discovered to be in the viewport, or ATF [3].

In this paper, we conjecture that browsers may leverage
HTTP/2 prioritization to improve page SI scores, not just ATF
time. We make the observation that all images are not created
equal. For example, two images of same display dimensions
(number of pixels) may take up different numbers of bytes
on disk. As a result, the image with the lower byte to pixel
ratio, a metric we dub image density, transfer more quickly
and display earlier to improve page SI and user experience.
That approach would eliminate head of line (HoL) blocking
in the transport layer send buffer among images of different
densities. The questions we address in this paper is whether
and how the web performance community may leverage dif-
ferences in image density to improve user experience with
existing websites. In other words, can browsers use HTTP/2
stream prioritization to remove HoL blocking among images
of different densities to improve page SI.

We address the questions of the practical utility of image
density variation on several fronts. First, we describe Object
Density Distribution (ODD) as a new webpage characteriza-
tion metric that approximates the SI improvement of image
prioritization during a page load. Second, we characterize
ODD of real webpages, their ODDness if you will. Our anal-
ysis of the 200 most popular Alexa pages (Alexa-200) shows
considerable ODD skewness and kurtosis, which indicates
there exist meaninful opportunities for image prioritization.
Finally, third, we develop a URL-based method and a Go
client proxy to prioritize HTTP/2 streams based on the density
of images they carry. To evaluate our method we measure the
SI of 20 test pages composed of images from representative
Alexa-300 pages loaded from Apache, NGINX, and Caddy
servers. Finally, we present a machine learning model to
identify rare page/network condition scenarios where image
prioritization should not be used.

In sum, this paper offers the following contributions:
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• We show the benefit of prioritizing images based on their
density. Specifically, our results show SI improvement
over 40% in some cases and a mean improvement of 5.7%
across a variety of web pages and network conditions.
Our work dovetails earlier results from the web perfor-
mance community on the importance of prioritization of
CSS and JS objects and on the correlation of total image
weight on SI [4]. Our results represent an upper bound of
SI improvement – to fully realize them, developers should
avoid hierarchical page structures so as to avoid blocking
of image loads by JS execution and DNS lookups.

• We present a URL-based technique for image prioritiza-
tion and describe how it may be safely and incrementally
deployed by CDNs and browsers.

• We describe the implementation of a Go proxy with a
forwarding delay of less than 4 ms, which demonstrates
the effectiveness of image prioritization even before the
method becomes adopted by browsers.

We organize the rest of this paper as follows. In Section II
we introduce ODD and characterize the ODD of existing web
pages. Section III details the implementation of our proxy and
method for image load prioritization. We measure the benefits
of image prioritization in Section IV. Section V outlines
related work on web performance metrics and HoL blocking.
Finally, we discuss options for proxy deployment and conclude
in Section VI.

II. OBJECT DENSITY DISTRIBUTION (ODD)

Our guiding idea is that not all images are created equal.
We begin by explaining the concept of image density. We then
show the degree to which image density varies among the
images of existing web pages to understand the opportunities
for image prioritization.

A. Image Density

We define image density as the ratio of image weight in
bytes to image size in rendered pixels on a webpage. Thus,
a 614 KB image might take up 290 × 162 pixels at density
of 0.0131. Note, that the pixel size of an image is its display
size defined in HTML, as absolute pixel dimensions, or image
scale factor, rather than the dimensions of the image file
itself. Browser’s Document Object Model (DOM) provides
that information as the client image size. Using this definition,
we calculate image density for every image, visible above the
fold and dub this distribution client ODD.

While client ODD represents the ground truth of rendered
images sizes, there are several disadvantages to that metric.
First, the calculation of client ODD requires the analysis of
the HTML structure of a page. Full page HTML may not be
available until all JS resources have been loaded and executed,
which in many cases does not happen until after the browser
starts requesting the embedded images. Second, the same
image may be embedded at different size in different pages,
which makes it difficult for the server to know its density on
any given page – a property that we will show in Section III-A
is helpful in implementing image prioritization.

Fig. 1. Client and Natural pixel count for images in Alexa-200 pages.

To address these shortcomings of client ODD we make
the observation that in well-optimized webpages the absolute
image size does not significantly differ from the its size defined
in the HTML [5], [6]. This correspondence makes sense,
because embedding large images, but displaying them scaled
down wastes network resources. Similarly, embedding small
images, but scaling them up reduces their visual quality. The
DOM provides the size of an image before scaling as the
natural image size.

To quantify the relationship between client and natural
image sizes we measure the images on the Alexa-200 pages.
We use the Chromium browser to load each web page, extract
the list of all objects with the ‘img’ tag and obtain its client
and natural dimensions. We ignore the pages that do not allow
scraping.

Figure 1 shows the client and natural densities of the
Alexa-200 images. The x-axis shows image rank sorted by
size, while the y-axis shows image client size across all the
pages. We observe that the client and natural size distribution
are moderately close with a correlation of 0.45. For most of
the images the natural image size is greater than the client size.
We also observe that webpages scale down 7% of images by
over 1000%. We call such images black hole images because
their level of rescaling results in very high densities.

These results show that while natural density does to some
extent approximate client density, the two cannot be used inter-
changeably. Thus an accurate ODD calculation does currently
require HTML analysis for most pages. We believe it may
be possible to eliminate that requirement by encoding images
such that the natural and client densities are the same. In well-
optimized pages natural and client image sizes should be made
to match [5], [6]. Indeed we found that is already the case for
about 30% of Alexa-200 images. We also observed that most
of these well-optimized pages are in the more popular set of
Alexa-100 pages.

B. ODD of Existing Webpages

When a page contains images of varying density, loading
the less dense images first results in more pixels displayed
after transferring same number of bytes. On the other hand,



Fig. 2. ODD skewness and kurtosis of Alexa-200 pages.

on pages where the density of all images is the same there
is no advantage to prioritization, because regardless of which
image is loaded first the browser displays the same number of
pixels per loaded byte.

To understand the opportunity for image prioritization we
want to understand the variation of image density in the client
ODD (hearafter just ODD) of existing webpages. To charac-
terize ODD we compute its skewness (distribution asymmetry
about its mean) and kurtosis (distribution “tailedness”). Both
skewness and kurtosis are statistical measures of population
differences. In our case, they signify the degree to which
image density varies within a page and creates opportunities
for image prioritization. In Section IV-C we find that indeed
both ODD skewness and kurtosis predict SI speedup from
image prioritization with a high accuracy.

Figure 2 shows the skewness and kurtosis of the Alexa-200
pages. The x-axis shows the pages sorted by the skew-
ness/kurtosis metric, which is marked on the left and right
y-axes respectively. For 50 of the pages the standard deviation
of ODD is zero or very small, which causes divide by zero
errors in floating point calculations of skewness and kurtosis
– we remove those pages from the graph. Additional 39 pages
did not permit crawling. We observe that most of the remaining
pages have defined and non-zero values of ODD skewness
and kurtosis, which indicate variation in image densities and
opportunities for image prioritization.

C. Image Prioritization in Existing Browsers

Browsers already prioritize the loading of JS and CSS
files [1]. We want to understand whether the browser does
something similar under the hood for images of different
density. To do so, we conduct the following experiment. We
load a page containing 24 images of various densities and
associate each transferred HTTP/2 frame with an image and
record the density of the contained image, as well as the arrival
time of the frame. In Figure 3 we plot the relative density
(normalized to the densest image on the page) of delivered
frames on the y-axis versus their arrival time on the x-axis.
The black ‘x’ markers show the density of loaded bytes using

Fig. 3. Density of delivered bytes during page load.

the 71.0.3578.98 version of the Chromium browser from the
Caddy server.

A page load that prioritizes objects by their density should
show low density bytes transferred first. Figure 3 shows the
opposite, where the density of loaded bytes is unordered over
time. In fact the solid black trend line shows that the average
density of loaded bytes actually decreases over time as the
result of random load order with respect to image density. Our
observations are consistent with a recent measurement study,
which showed that browsers assign the same priority to images
and load them in parallel [7]. A recent work by Wijnants et al.
offers a more detailed treatment of browser implementation of
HTTP/2 priorities [8].

For comparison we also plot (gold round markers and a
dashed trend line) a download that prioritizes objects by their
density, using the method described in the following section.
Our approach tends to load low density images first although
due to server behavior the prioritization is not strict. We
come back to this result in Section IV-B after detailing the
implementation of our method and quantifying the benefit of
prioritization on page SI.

III. MITM PROXY

To ascertain the potential of image prioritization to improve
SI at a large scale we design a collaborative mechanism be-
tween clients and content providers, or CDNs. Due to the oner-
ous nature of browser modifications we choose to implement
our mechanism on an HTTP/2 man-in-the-middle (MITM)
proxy deployed on a client machine in parallel with the
browser.

A. ODD and Stream Prioritization

To prioritize a website’s images the proxy needs to know
their densities. The requisite information, image byte weight
and pixel size, is not available until page HTML and the
images themselves finish loading. To avoid the delay on the
browser, we propose that the content providers, or CDNs,
analyze the HTML of hosted pages and embed image density
in the object URL. Thus pic.png of weight of 614 KB and
size 290 × 162 pixels embedded in the base HTML would



become pic_0.0131.png. However, as we explain later, the
proxy needs to know density relative to other images on a
page, such that the densest image receives normalized of 1
and other objects densities in the range (0, 1]. We assume
that while analyzing page HTML the CDN could normalize
image densities and convert absolute density of 0.0131 to, for
example, 0.65 and save the image as pic_0.65.png. The
MITM proxy forwarding HEADERS frames from the browser
scans embedded image URLs for their densities and uses
them to assign priorities to HTTP/2 streams originated by the
browser to request embedded content. We note that for two
images with the same density, even if they have different pixel
sizes, there is no SI difference between loading one image first
and loading them in parallel. Injecting image density metadata
into image URLs manages to avoid the need for browser or
server modifications thus making our method easy to deploy
incrementally.

A potential disadvantage of this method is that the same
image may embedded in two different pages and have different
normalized densities with respect to other images on each
page. As a result, it might have to be hosted twice as, for
example, pic_0.65.png and pic_0.55.png. While hosting
multiple versions of the image is relatively inexpensive, it is
important to prevent the browser from loading the image twice
and instead having it use a cached version. To allow browsers
to use cached versions of an image the CDN could replace
the name of the image with an ID unique within a page, for
example, 0376_0.65.png. The browser could then serve the
image from the cache based on the 0376 prefix and the .png

extension matching the existing cache mechanisms.
When a request for a new image passes through the proxy

the proxy computes its stream priority as

strm_prio = (1 - normalized_density) *
h2_max_prio

to assign less dense images higher priorities. Additionally, the
proxy should make sure that the new priority is lower than the
priority reserved for the CSS and JS objects (h2_max_prio)
and stays between medium and low stream priorities [3]. In
this way no image download blocks these high priority objects.

For the purposes of this paper we implement the priority
mechanisms in the proxy, but the method could be imple-
mented more efficiently in the browser itself. The browser
already analyzes the page HTML and so it knows the client
size for each image. If CDNs embedded the byte size in
each image URL as, for example, pic_614.png, the browser
would be able to calculate the client density for each image,
normalize it, and use it to assign stream priorities. While the
proxy could do so as well, the overhead of processing HTML
on the proxy would add additional delay to its forwarding
function. This mechanism would still enable browsers to
leverage their cache by matching the pic prefix and the .png

extension. If the same image were embedded at different sizes
on two different pages, the browser could use the image from
its cache as long as it was the larger of the two.

B. Proxy Implementation

We decided to implement our MITM proxy in Go after early
experiments with a popular Python proxy added unacceptable
forwarding delays. The Go proxy exposes an HTTP/2 server
towards the browser and uses standard HTTP/2 client to
connect with the web server. To achieve low latency and high
throughput the synchronization and data exchange between
the said proxy parts and its main logic loop is asynchronous
using Go’s channels and routines. Throughout its operation
the proxy maintains two independent TCP connections and
two independent HTTP/2 connections: one on its client side
and one on its server side. The proxy operates as follows:

1) Connect into the lower levels of Go’s HTTP/2 server to
access HTTP/2 frames as they arrive from the browser.

2) Intercept HEADERS frames containing browser requests.
3) For each request, extract relative image density (normal-

ized to the website’s densest object) from request URI,
calculate stream priority based on image density, and
create a request for the server with the updated priority.

4) Forward object streams from server to client according
to priorities from Step 3.

IV. EVALUATION

To understand the effectiveness of image prioritization on
reducing SI we conduct a measurement of 20 webpages
loaded from three server implementations under a range of
network conditions. Our results show that most pages in that
set benefit from image prioritization performed by our proxy
implementation. We also show a predictive model to decide
when images on a page may be safely prioritized.

A. Experimental Setup

The benefit of image prioritization depends on how well
servers support HTTP/2 stream prioritization. The question
arises because RFC 7540 states that “expressing priority
is ( . . . ) only a suggestion” for the server [9]. Indeed many
CDN servers do not obey prioritization of ATF images [10].
To understand whether image prioritization is effective across
server implementations we evaluate our method on the
Apache, NGINX, and Caddy servers. The servers differ in
how they implement HTTP/2. Apache uses libnghttp2

library [11], NGINX uses its own implementation of the
standard – the ngx_http_v2_module [12], and Caddy relies
on Google’s Go implementation of HTTP/2 (the same one
we use in our proxy) [13].

To accurately measure the impact of image prioritization
on sets of images contained in real pages our approach is to
save offline the images embedded in a webpage and create a
new page structure that displays them at as a grid. We include
images embedded in the base page, but not banner ads, which
in general load from servers not controlled by page developers.
This method separates the impact of image load time from
other factors, such as JS execution, DNS lookups, or blocking
calls to third party servers. Indeed in some real world web
pages we observe such blocking behavior, which nevertheless
may be avoided with existing page optimization techniques



Fig. 4. ODD skewness and kurtosis of 20 test pages.

discussed further in Section V-A [1], [14]–[17]. As such, our
measurement of page SI and improvement from prioritization
represent an upper bound. At the same time, a recent analysis
of HTTP Archive shows a high correlation between total image
weight and SI, so our results indicate the impact of image
prioritization on that aspect of web performance [4].

For our evaluation we create a set of 20 test pages with
images originating from Alexa-300 websites to capture differ-
ent representative page layouts. Based on pictures from real
pages, we wanted to create a set of different pages that span
possible page characteristics to understand their relationship
with prediction and benefit. While measurement with real
web pages would have been in some ways preferable, our
method does require object renaming, which would require us
to serve these pages from our servers and estop ‘in the wild’
realism anyway. Our test pages contain images from news
service, video streaming, e-commerce, image gallery websites.
We obtain image sizes by querying the DOM. The number of
images on these pages ranges from 19 to 125, their total byte
size from 128 KB to 5 MB, and their image area coverage from
19.2% to 78.7%. We show the ODD skewness and kurtosis of
the test pages in Figure 4, which in shape are representative
of the skewness and kurtosis of Alexa-200 pages in Figure 2.

Our evaluation environment consists of the following. We
run the Chromium browser (71.0.3578.98) and proxy (Go ver-
sion 1.10.3) on commodity Ubuntu 16.04 Dell OptiPlex 7040
with Intel Core i7-6700T CPU and 16GB of memory. We
orchestrate our browser tests by accessing Chromium remotely
from a Node.js script via Chrome DevTools Protocol [18] and
the chrome-remote-interface client library (0.26.1) [19]. We
measure SI by saving each page load history into Chromium’s
trace file and use the Speedline library (1.4.2) to interpret
it [20]. The server machine is a Lubuntu 17.04 ThinkPad R61E
Intel Core 2 Duo T7100 CPU with 4GB of memory. We use
default TCP settings for both machines. Client and server
machines connect over 100 Mbps Ethernet.

We conducted our experiments using three types of netem
emulated networks conditions of 2, 5 and 10 Mbps with 10, 30,
and 50 ms RTT and three popular web servers Caddy (0.11.1),
Apache (2.4.25) with libnghttp2 library (1.2.1.1) and

Fig. 5. Test page SI improvement for Caddy over 5 Mbps with 30ms RTT.

NGINX (1.10.3). For the purpose of evaluation we conduct
each measurement 40 times.

B. Image Prioritization and SI Speedup

We aim to understand the effectiveness of image prioriti-
zation by density to reduce page SI. For each test page we
measure its SI in three download scenarios: without a proxy,
through a proxy but without prioritization, and through a proxy
with image prioritization. SI measurement through a proxy
without prioritization allows us to distinguish any negative, or
positive effects of the proxy apart from prioritization.

Figure 5 shows the SI improvement of pages loaded through
our proxy with and without prioritization with respect to the
SI of the no proxy scenario. We load the pages from the
Caddy server with 5 Mbps bandwidth and 30 ms round trip
time (RTT) controlled by netem. The x-axis shows pages in
descending order of percentage SI improvement, while the
y-axis shows the percentage of SI improvement. Each point
represents the mean of the SI improvement over 40 runs with
the error bars showing 95% confidence intervals.

In general we observe that the SI of most of the test
pages improves under prioritization. In Figure 5 the maximum
SI improvement is almost 40% with the mean improvement
across all pages of 5.7%. In contrast using a proxy without
prioritization does show a slight degradation in performance
(SI increase) of 0.85%.

Although the prevailing wisdom is that extra bandwidth
does not matter much [21], there is a correlation between
image weight and SI that can only be accounted for by
bandwidth [4]. To gain a fuller picture of the effect of
image prioritization we conduct the experiments under other
network conditions. Table I shows the mean SI improvement
for Apache, NGINX, and Caddy under combinations of 10,
30, and 50 ms latency and bandwidth of 2, 5, and 10 Mbps.
We observe that image prioritization helps in all cases except
for Apache and Caddy servers under very performant networks
with 10 ms latency and bandwidth of 10 Mbps. This adverse
effect is due to the forwarding overhead of the proxy, around
4 ms, and may be eliminated if prioritization were to be
implemented in the browser itself. We also observe large



RTT (ms) Bandwidth (Mbps) Mean SI Improvement (%)
Apache NGNIX Caddy

2 2.55 5.35 6.00
10 5 1.55 2.85 3.35

10 -1.2 0.95 -1.15
2 4.55 5.8 8.35

30 5 3.0 4.6 5.7
10 1.95 3.35 2.9
2 5.75 7.95 10.1

50 5 5.65 8.3 9.0
10 4.9 6.95 6.75

TABLE I
MEAN SI IMPROVEMENT ACROSS TEST SCENARIOS

benefits of image prioritization for experiments with 50 ms
latency. While a portion of the improvement is due to the proxy
splitting the TCP connect (the proxy without prioritization by
itself reduces SI by 1-4%) the bulk of the benefit comes from
prioritizing images.

C. Prediction of SI Speedup

Although image prioritization leads to SI improvement on
average, we want to understand if it is possible to predict
whether prioritization would reduce SI a given page. An
accurate prediction model would enable our proxy to safely
decide when to apply image prioritization. For example in
Figure 5, prioritization should be applied to pages 1-17, but
not 18-20.

We used our measurement data to predict the ratio of
SI speedup from image prioritization (prioritization SI to
no proxy SI) for each server across the different network
conditions. SI ratio less than 1 indicates that prioritization
helps, while ratio greater than 1 indicates that prioritiza-
tion should not be used. We trained a linear regression
model (sklearn.linear_model.LinearRegression) based on
webpage characteristics (factors) that govern the benefit from
image prioritization. These were: 1. the number of images
on a webpage (num imgs) – the more images, the more
opportunities for prioritization; 2. the percent of a page
covered by images (img area prcnt) – the greater the image
coverage, the greater the impact of images on SI; 3. the
total image size (total img bytes) – the more image bytes,
the more time spent in image transmission; 4. webpage ODD
characterized through its standard deviation (ODD std dev),
variance (ODD var), kurtosis (ODD kurt), and skewness
(ODD skew). For each factor set we trained a model for
all |n − 1| website subsets and predicted the SI ratio for

the remaining site. We then computed the percent error of
predicted to actual SI ratio for each server and set of network
conditions.

Table II shows the results of the prediction model. For each
factor set and server we show the means of percent error, SI
ratio, and factor coefficients. We found that ODD var was
not a predictive factor (error greater than 100%) and so we
omit the results from factor sets including the metric. We also
found that total img bytes, while helpful in predicting SI, is
not a significant factor in predicting speedup ratio (less than
1.2 × 10−8) and so for simplicity we present results from
factor sets that do not include it. We also considered other
factor combinations, for example num imgs, img area prcnt,
ODD kurt, ODD skew, which did not show more accurate
predictions in general.

The results show that linear regression predicts SI ratio with
a high accuracy across websites and network conditions. While
the results in Table II are means across network conditions, we
observe that the prediction error for individual server, factor
set, network condition scenarios is small enough to accurately
predict whether the speedup ratio is positive, or negative, and
so whether prioritization would be helpful.

We observe that ODD kurtosis is the most predictive
ODD characterization. The predictive power of kurtosis makes
sense, because kurtosis indicates whether there is a spread
of densities among page images which benefits prioritization.
Similarly ODD skewness is predictive, because high skewness
indicates a long tail of low density images on a page, which
likewise benefits prioritization. These results show a proxy
with a trained model, knowledge of server type from the
HTTP reply header, and ODD distribution computed from
image URLs embedded in the HTML base page, could safely
decide whether or not to apply image prioritization to reduce
page SI. These results also justify the use of ODD kurtosis
and skewness in Figure 2 to estimate the potential of image
prioritization in existing webpages.

D. Server Behavior

Finally, we aim to understand server behavior when pri-
oritizing HTTP/2 streams. Figure 6 shows the timeline of
webpage objects loaded from Caddy with and without prior-
itization. In each scenario the browser requests all images as
it parses the base HTML. The y-axis shows the image density
(and relative priority) while the x-axis shows object load time.

Factors Server Error % SI Ratio Coefficients
Caddy 6.68 0.9335 0.0006, 0.0009, 0.0020

num imgs, img area prcnt, ODD kurt Nginx 4.70 0.9512 0.0006, 0.0007, 0.0039
Apache 3.63 0.9653 0.0002, 0.0003, 0.0009
Caddy 6.79 0.9325 0.0007, 0.0010, 0.0078

num imgs, img area prcnt, ODD skew Nginx 4.81 0.9510 0.0006, 0.0008, 0.0161
Apache 3.68 0.9647 0.0002, 0.0003, 0.0030
Caddy 7.13 0.9299 0.0007, 0.0013, 0.0503

num imgs, img area prcnt, ODD std dev Nginx 5.62 0.9522 0.0006, 0.0009, 0.0234
Apache 3.83 0.9635 0.0002, 0.0004, 0.0162

TABLE II
LINEAR REGRESSION PREDICTION OF SI SPEEDUP RATIO.



Fig. 6. Time line of a page load with and without density prioritization.

We observe that prioritizing lower density images allows
them to finish loading earlier. In contrast, when the same
images load at the same priority their load time depends on
their size. This effect of prioritization holds regardless of the
actual priorities given to streams, as long as the relative stream
priority (priority order between streams) remains the same.
We have seen this effect on Apache and NGINX servers as
well. In other words, servers seem to implement strict priority
and adjusting stream priorities in a way that does not affect
their order has no effect on performance. Interestingly, strict
priority seems to be in contrast with RFC 7540, which states
that “Each dependency is assigned a relative weight, a number
that is used to determine the relative proportion of available
resources that are assigned to streams dependent on the same
stream” [9].

We also observed that Apache and NGINX servers deviate
from requested priorities by sending a few bytes of a lower pri-
ority (higher density) object first. Figure 3 shows this behavior
where the first few bytes transferred under prioritization (gold
round markers) have density around 0.75. Then after around
0.2 seconds the server starts sending frames containing a set of
low density images in a round robin fashion. We suspect that
the initial transmission of high density bytes might be due to
races between threads that fetch objects from disk. As object
requests arrive from the server, they trigger server threads that
load images from disk and pass them to the HTTP/2 send
buffer. It is possible that low priority stream bytes enter the
HTTP/2 send buffer and pass to the send buffer of the TCP
connection before bytes of a high priority stream displace
them in the HTTP/2 send buffer. To avoid this HoL blocking
in the TCP send buffer the server administrator may set the
TCP_NOTSENT_LOWAT socket option to restrict the TCP send
buffer to the minimum size required to fully utilize connection
bandwidth [7]. Even if low priority bytes get in initially, once
the buffer empties, higher priority objects may be transmitted
by the server more quickly. Another option in Apache is to use
mod_file_cache module to keep high priority (low density)
objects in memory [22].

V. RELATED WORK

To put our work in context we briefly discuss related work
on web page optimization developers might use to reduce SI
or other web performance metrics [2], [23].

A. Web page optimization

There are a number of well-understood methods for web
page optimization [24], [25]. Browsers automatically prioritize
the load of CSS files, such that they do not block the display of
images when these load. Similarly, the load of JS files receives
high priority, because they might point to additional HTML,
CSS, or object files. Beyond that developers may optimize
image byte size to its display size, use lossless compression to
encode them, and leverage browser caching such that images
embedded in multiple pages do not need to be reloaded.
Further, developers may optimize a page to defer loading of
objects not visible ATF and to defer parsing of JS scripts
not on the critical path to first paint. After a page design is
finalized a developer may also minimize HTML and JS to
reduce script sizes. There are several tools on the market to
identify these and other candidate optimization for a given
page [5], [6], [26].

Recent browsers also provide facilities to order the loading
and display of image objects. For example the preload

HTML tag directs a browser to load certain images first [1].
This mechanism may be augmented by asking the browser to
defer the load of other images until they come into view, for
example when a user scrolls down the page [27]. Combined,
these mechanisms allow a user to specify three priority levels
even in HTTP/1.1. For more control, Chrome allows develop-
ers to order image load and display using the recently released
image decoding API [14]. The intent of the API is to allow
images to load asynchronously then display when loaded, thus
masking the loading time from the main thread. The API can
block the loading of certain images, such as advertisements or
high density images in our case, until the hero images or low
density images have been displayed. Finally, there is recent
work on ordering the preloading of media content such as
video, audio, and track [15].

The research community has also proposed several solutions
for automatic web page optimization. Shandian pre-processes
page structure on a proxy and then orders network transfers
and computation to reduce PLT [16]. KLOTSKI discovers
object dependencies and uses greedy scheduling to reduce PLT
without violating them [17]. Instartlogic CDN recodes images
to enable progressive load [28]. These methods, however, do
not prioritize images by their density, and so our method is
orthogonal.

B. Head of line blocking

Frame-based protocols, such as HTTP/2, suffer a “latency
tax” as they traverse TCP connections [29]. The problem was
first described by Clark and Tennenhouse as a disconnect
between in-order delivery of bytes in TCP streams and frame-
based application protocols, which only require in-order bytes
within each frame [30]. As a result, the delivery of frame i+1



to the application layer may be unduly held up by frame i in
the TCP receive buffer waiting for the retransmission of a lost
TCP segment. Qian et al. define this type of HoL blocking as
Type-L (loss) blocking [31]. They also define Type-S (sender)
blocking, which occurs when delay sensitive HTTP/2 frames
queue in the TCP send buffer behind frames of a large, delay
insensitive object.

In this paper, we described that Type-S HoL blocking also
occurs when a low density object is blocked in the TCP send
buffer behind a high density object. The research community
has proposed several solutions to eliminate Type-S HoL block-
ing specifically. Kernel-Informed Socket Transport (KIST)
prevents Type-S blocking in the Tor network by buffering
data at the application layer and passing to the transport layer
data only at the socket serialization rate [32]. µTCP builds
in multi-queue support into TCP [29]. TM3 modifies kernel
packet scheduling to assign data to packets, in priority order,
right before their transmission [31]. SMig enables migration
of HTTP/2 streams between connections, even over different
network interfaces [33]. Finally, Goel et al. propose a multiple
connection approach that does not require any modifications
to the client [34]. The proxy solution we present in this paper
mitigates Type-S HoL blocking among images of different
densities.

VI. CONCLUSIONS

We presented a new method to improve web page Speed
Index by prioritizing the images of low density, or low byte
weight to pixel size ratio. We also introduced a new web page
characterization metric, Object Density Distribution (ODD),
and showed that most pages in the 200 most popular Alexa
pages have non-zero ODD kurtosis and skewness, which
creates meaningful opportunities for image prioritization. We
implemented a Go HTTP/2 proxy to prioritize images based on
image density embedded in object URLs. Density based image
prioritization reduced SI in our experiments by around 5.7%
on average and is an incrementally deployable, orthogonal
technique to existing web performance optimization methods.
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