
MITATE: Mobile Internet Testbed for
Application Traffic Experimentation

Utkarsh Goel, Ajay Miyyapuram, Mike P. Wittie, and Qing Yang

Department of Computer Science
Montana State University, Bozeman, MT 59717, USA

Abstract. This paper introduces a Mobile Internet Testbed for Ap-
plication Traffic Experimentation (MITATE). MITATE is the first pro-
grammable testbed to support the prototyping of application communi-
cations between mobiles and cloud datacenters. We describe novel solu-
tions to device security and resource sharing behind MITATE. Finally,
we show how MITATE can answer network performance questions cru-
cial to mobile application design.

Key words: mobile networks; testbed; application; performance

1 Introduction

Innovative mobile applications, such as multiplayer games and augmented re-
ality, will require low message delay to provide a high quality of user experi-
ence (QoE) [1, 2]. Low message delay, in turn, depends on low network latency
and high available bandwidth between mobile devices and cloud datacenters, on
which application back-end logic is deployed. Unfortunately, mobile network per-
formance can change rapidly [3]. Worse, traffic shaping mechanisms in cellular
networks, such as as cap-and-throttle, traffic redundancy elimination, and deep
packet inspection (DPI), can delay application messages without being reflected
in standard metrics of network performance [4–6].

If innovation in the mobile space is to achieve broad adoption, new appli-
cations must deliver a high QoE across a range of network conditions. In other
words, application communication protocols must be smart enough to adapt
to changing network performance to keep message delay low. Such adaptations
might include changing packet size, or moving between server endpoints to de-
liver best traffic performance for a given client [3, 7].

To design and validate adaptive communication protocols developers need
to prototype their implementations in production networks. The research com-
munity has produced several testbeds capable of application prototyping in the
wired Internet [8–20]. To date, however, cellular network measurement platforms
are not programmable in that they do not provide an foreign code execution en-
vironment [21–26]. Instead applications are evaluated in network simulators con-
figured to reflect measurements of network performance [3]. While measurement-
based simulation allows repeatable experiments, it misses the dynamic effects of
competing traffic in cellular schedulers and of traffic shaping mechanisms.



2 Utkarsh Goel et al.

The technical problem we address in this paper is a lack of a programmable
testbed for mobile application prototyping in production cellular networks. We
have identified two challenges to building such a testbed. First, the personal
nature of mobile devices creates user concerns over privacy, accountability for
actions of foreign code being prototyped, and abuse of limited data plan and
battery resources. Striking a balance between a flexible application prototyping
environment and the safe execution of foreign code has been a difficult problem
even in the more permissive wired environment [10, 18]. Second, because mobile
battery and data plan resources are limited, testbed participants need adequate
incentives to share them. Difficulty in enlisting mobile users has limited mea-
surement studies to small samples [26], high cost of testbeds based on dedicated
hardware [27], and collection of only high level network performance metrics [24].

In this paper we describe MITATE – a Mobile Internet Testbed for Applica-
tion Traffic Experimentation made possible by novel solutions to the problems
of security and mobile resource sharing. MITATE is unique in that it allows
programmable application traffic experiments between mobile hosts and back-
end server infrastructure. MITATE provides strong client security by separating
application code execution from traffic generation. MITATE also provides incen-
tives and protections for mobile resource sharing through tit-for-tat mechanisms.
MITATE’s specialized traffic experiments can help developers answer questions
crucial to mobile application design such as: “What is the largest game state
update message that can be reliably delivered under 100 ms?,” “Does my ap-
plication traffic need to contend with traffic shaping mechanisms?,” or “Which
CDN provides fastest downloads through a particular mobile service provider’s
network peering points?”

The remainder of this paper is organized as follows. Section 2 covers re-
lated research. In Section 3 we describe MITATE’s architecture. Section 4 shows
MITATE application prototyping capabilities. Finally, we conclude and present
directions for future work in Section 5.

2 Related Work

The research community has produced several testbeds capable of application
prototyping in the wired Internet [8–20]. To date, however, cellular network mea-
surement platforms are not programmable in that they do not provide a foreign
code execution environment [21–26]. The result is a functionality gap: new appli-
cations are either evaluated on a small number of mobile devices, or in network
simulators [3, 28]. While small scale studies capture real application performance,
they miss variation across geographic areas, carriers, and devices. On the other
hand, simulation studies configured to reflect aggregate measures of network per-
formance miss the dynamic effects of traffic shaping and cellular schedulers [3–6].

Existing testbeds share some features with MITATE, such as criteria-based
filtering of testbed devices [26], (limited) evaluation of application layer mech-



MITATE 3

Measurement 
Servers

DB Server

Cell Tower

WiFi AP

Public Internet

A

B

2. Query for new experiments

3. Experiment traffic
4. Traffic 
metrics

Web Server

5. Exp. result data

1. Exp. configuration

Public Cloud 
Instances

M-Lab Servers

Fig. 1. MITATE architecture and steps of a network traffic experiment.

anisms such as HTTP and DNS [23], and an M-Lab1 back-end [24]. Closest to
our approach is Dasu, which provides a custom execution environment within an
extension to a PC BitTorrent client [18]. SatelliteLab is also similar to MITATE
in that prototyped application logic is not executed on edge devices [13].

One mobile testbed with programmable features is PhoneLab, which provides
200 participants with mobile phones and discounted data plans [27]. In exchange,
participants agree to network experiments executed on their phones. However,
PhoneLab relies on a custom OS, which limits its deployment to dedicated hard-
ware, since installing an OS is a significant barrier to entry for most users [13].

3 MITATE

MITATE goes beyond current work and allows application prototyping on mobile
devices in production cellular networks. MITATE offers the flexibility of Dasu
and SatelliteLab, but without the security vulnerabilities of mobile code [13, 18].
To achieve wider adoption and easier access than the dedicated hardware model
of PhoneLab, we adapt proven resource sharing incentives [27, 29]. In this section,
we describe MITATE’s architecture, application prototyping capabilities, and
address the challenges of security and resource sharing on mobile devices.

3.1 Architecture and Traffic Experiments

To register a device with MITATE, a user downloads our mobile application and
starts it as a background service with her login credentials, obtained by creating
a MITATE account. Once her device is registered, a user can conduct traffic
experiments, referring to Figure 1, as follows: In Step 1, a user creates an exper-
iment by uploading a configuration file, described in Section 3.2, via the Web
interface. In Step 2, MITATE devices query the database for new experiments,
whose criteria they meet. To reduce resource contention, as in SatelliteLab, we
allow only one experiment at a time on a device [13]. If device A, for example,
meets the geographic location and network type criteria of an experiment, A

1 http://measurementlab.org



4 Utkarsh Goel et al.

<experiment>
<transfer>
<id>t1</id>
<src>client</src>
<dst>54.243.176.74</dst>
<prot>UDP</prot>
<dstport>5060</dstport>
<bytes>32</bytes>

</transfer>
<transfer>
<id>t2</id>
<src>54.243.176.74</src>
<dst>client</dst>
<prot>UDP</prot>
<srcport>5060</srcport>
<bytes>512</bytes>

</transfer>

<criteria>
<id>c1</id>
<latlong>"45.666 -111.046"<\latlong>
<radius>5000<radius>
<networktype>cellular</networktype>
<starttime>12:00</starttime>
<endtime>13:30</endtime>

</criteria>
<transaction count="10">
<criteria>
<criteriaid>c1</criteriaid>

</criteria>
<transfers>
<transferid>t1</transferid>
<transferid delay="40">t2</transferid>
<transferid>t1</transferid>

</transfers>
</transaction>

</experiment>

Fig. 2. MITATE XML configuration file.

will begin, in Step 3, to transfer data defined by the experiment to the measure-
ment servers. Experiment transfer traffic is timed at each endpoint (mobiles and
measurement servers) and network performance metrics, together with meta-
data, are reported back to the database in Step 4. Finally in Step 5, a user may
access the Web interface again to visualize, or download the experiment data
collected by multiple devices. Based on the collected data, the user may refine
her experiment and restart the process from Step 1.

3.2 Programmable Network Traffic Experiment Configuration

MITATE offers a flexible programming environment that supports evaluation
and optimization of existing application traffic traces, as well as prototyping of
adaptive application communication protocols. Existing network testbeds sup-
port such flexibility through mobile code, whose potential security vulnerabilities
result in designs based on dedicated testbed hardware [8, 27], or execution envi-
ronments constrained by custom APIs [10, 18]. Neither solution is satisfactory.
While the dedicated hardware limits adoption, custom APIs require application
reimplementation in restricted, or non-standard programming environments.

We propose a secure and flexible network testbed design that eliminates the
drawbacks of mobile code. MITATE experiments use multiple rounds of statically
defined traffic transmissions. Processing between the rounds, i.e. mobile appli-
cation logic, is implemented offline. Offline processing allows for the execution
of unmodified application code inside an emulator2 with message transmissions
delegated to MITATE. Offline processing can also optimize communication pro-
tocol parameters, such as packet size, through binary parameter search, or a
more powerful approach, such as CPLEX.3 Finally, static experiment definitions
allow static verification, which simplifies resource management (Section 3.3) and
testbed security design (Section 3.4) and leads to a more accessible testbed.

2
http://developer.android.com/tools/help/emulator.html

3
www.ibm.com/software/commerce/optimization/cplex-optimizer/



MITATE 5

Application Traffic Trace Experiments can help answer questions such as
“What is the largest game state update message that can be reliably delivered
under 100 ms?” An abbreviated MITATE experiment configuration XML file in
Figure 2 specifies two transfers, t1 and t2. The transfers transmit the specified
number of bytes between a MITATE mobile client and a datacenter server IP
with MITATE backend logic.

The configuration file also specifies criteria definitions that client endpoints
must meet before executing an experiment. In the Figure 2 example, criteria
c1, requires that a mobile be within 5000 m of geographic coordinates 45.666
-111.046 (Bozeman, MT), be connected to a cellular network, and that device
time be between noon and 1:30PM. MITATE will allow experimenters to specify
a wide set of criteria, for example radio signal strength, location (eg. radius,
bounding box, or set of ZIP codes), availability of GPS (indoor/outdoor), or
device travel speed (for example over 55mph).

Finally, configuration files specify one, or more transactions that group crite-
ria and transfers. In the Figure 2 example, there is one transaction, which con-
ceptually reflects a user request (transfer t1), game state update (transfer t2)
after 40 ms of server processing delay, and an acknowledgement (transfer t1).
This transaction will be executed by a mobile device if the device satisfies trans-
action criteria when polling MITATE servers, fewer than count devices have
completed the transaction, and the user issuing the experiment has sufficient
test data credit (see Section 3.3) to execute the entire transaction.

To find the largest game state update that can be delivered under 100 ms,
multiple experiment rounds can perform binary parameter search, with MITATE
reporting individual transfer and overall transaction delays. MITATE can also be
used with sophisticated optimization tools, such as CPLEX, where performance
of intermediate solutions are the reported metrics in each experiment round. Be-
cause MITATE traffic experiments use production networks they are not neces-
sarily repeatable, and so decision metrics should be averaged over multiple trials.
Finally, a repeat attribute can indicate that a transfer, or a transaction, should
be executed multiple times. These repeat and delay attributes can be combined
to configure periodic traffic, for example polling every 10 minutes for 24 hours.

Programmable Application Traffic Experiments can help answer ques-
tions such as “Which CDN provides fastest downloads through a particular
mobile service provider’s peering points?” To measure download times an exper-
iment needs to issue a DNS lookup, followed by a download from the resolved
server addresses. MITATE supports such experiments with two mechanism: ex-
plicit packet content and device-specific scheduling.

Figure 3 shows a configuration of transfer dns req that represents a DNS
lookup for a CDN server. The bytes tag contains the explicitly specified bytes
of a well-formed DNS lookup request. When the response tag is set to 1, the
DNS reply packet will be included in the result data set, from which a user can
parse out the resolved IP addresses.

To measure the download time of an image hosted on a particular CDN
network, the user would configure a second experiment with a well-formed HTTP



6 Utkarsh Goel et al.

<transfer>
<id>dns_req</id>
<src>client</src>
<dst>DNS</dst>
<dstport>53</dstport>
<prot>UDP</prot>
<bytes><![CDATA[0x0100be07de55...]]></bytes>
<response>1</response>

</transfer>

Fig. 3. DNS query in MITATE.

GET request to each resolved server IP. To make sure that each mobile device
contacts only the IP addresses it resolved, each MITATE measurement contains
the unique ID of the device that collected the result. That ID can be subsequently
used as an endpoint address instead of the “client” keyword.

One downside of our approach is a potential for delay between each round
of transmissions as experiments wait to be scheduled on mobile devices. We are
working on integrating MITATE with the Android emulator to make the pro-
cess of experiment configuration as easy as writing to a socket. Our integration
will carefully modify emulator clocks, so that they advance only by measured
transmission delay, excluding experiment scheduling delay. This mechanism will
allow studies of adaptive communication mechanisms, such as server-host switch-
ing in online games, implemented in native application code running inside the
emulation with only traffic transmissions being delegated to MITATE.

3.3 Deployment Incentives

One of the challenges faced by mobile network measurement platforms is how
to assure sufficient resource capacity for scheduled experiments. The limiting
resource is mobile data, subject to monthly caps.4 To assure a supply of mobile
bandwidth that matches the demand, a mobile testbed must, first, entice users
to contribute resources and, second, protect contributed resources from abuse.
MITATE jointly addresses both problems using a data credit exchange system
inspired by BitTorrent tit-for-tat mechanisms [29].

The insight behind BitTorrent’s tit-for-tat mechanisms is that they reward
users for contributing bandwidth, as well as for merely being willing to do so.
While in BitTorrent users make this assessment vis-a-vis each other, MITATE
accounts for contribution and willingness to contribute with respect to the system
as a whole. A MITATE user earns bandwidth credit for her experiments by
allowing others’ experiments to run on her device. A user is considered willing to
contribute when her devices reliably ping MITATE servers for new experiments.
The credit earned by the user, xearned, is computed daily as:

xearned = α× xmax × min

(
xcontributed

xmax
+

pactual

pexpected
, 1

)
,

where xmax is the remaining amount of mobile data a user is willing to contribute
during a monthly billing cycle divided by remaining number of days, xcontributed

4 While battery power is also limited, it can be more easily replenished by charging.



MITATE 7

is the volume of mobile data used by MITATE experiments on the user’s data
plan, pactual is the number of pings reaching MITATE servers within 24 hours,
and pexpected is the expected number of pings based on a system wide ping fre-
quency setting. The parameter α < 1 creates a mismatch between contributed
resources and earned credit intended to ensure high experiment completion rates
in areas with fewer participating devices, such as rural states. We recalculate user
credit every 24 hours to prevent users from accumulating credit that, if used all
at once, could deplete system resources on any given day. We expect that some
participants will use MITATE sporadically and others on ongoing basis. Similar
user participation takes place in BitTorrent, yet the system as a whole is able
to maintain a sustained capacity [29].

Thus, MITATE credits users for contributed bandwidth, which allows them
to use the bandwidth of others, keeping the two in a state of equilibrium. A final
element of the mechanism to prevent resource abuse is that daily experiment
bandwidth requirements are computed at submission time, a process facilitated
by the static XML experiment definition, and checked against submitting user’s
credit before being admitted to the system. We believe this approach is more pre-
dictable than resource caps enforced at run time that can lead to low experiment
completion rates [10]. We also believe MITATE’s credit based approach is simpler
and more democratic than the delegated trust approach proposed in NIMI [30].

3.4 Security and Privacy

MITATE’s goal of open-access necessitates a well thought out security design.
With the contributed data plan resources protected by the incentive mechanisms,
the security goals focus on protection of user privacy, the volunteered devices,
and non-MITATE Internet resources.

Protecting User Privacy MITATE runs on personal mobile devices, which
has the potential for violations of privacy if a device owner’s activity and per-
sonally identifiable information were to become public. For example, user net-
work and calling activity is not only private, but may itself contain personally
identifiable information. Similarly GPS data becoming public can lead to legal
challenges if traffic laws (speeding), or property laws (trespassing) were violated.

We have designed multiple levels of protection to preclude violations of user
privacy. First, MITATE can only be used for active traffic experiments and
cannot monitor non-MITATE traffic on a device. Second, while MITATE does
collect GPS and accelerometer readings as metadata to accompany network per-
formance metrics, users are asked to opt-in before starting the MITATE mobile
app. Finally, third, we separate all data collected on devices from personally
identifiable user account information. Each device registered with MITATE re-
ceives two random IDs: one to label traffic metrics collected on the device, the
other to keep track of credit data earned by the device for its owner. The dual
ID system means that collected experiment data are never linked to a device
owner’s identifiable information.



8 Utkarsh Goel et al.

Protecting User Devices Users who volunteer their devices for MITATE
agree to cede some control over them. It is imperative that MITATE limit other
user’s actions on volunteered devices to within the bounds of that agreement.
MITATE protects user devices with three mechanisms.

First, a user can set usage limits for mobile data, WiFi data, and battery
level on their devices. These limits are consulted during experiment scheduling to
disallow experiments that exceed remaining device resource allowance. Second,
users never directly interact with others’ devices. To submit an experiment, or
download data, users authenticate and communicate with MITATE servers over
encrypted connections. Mobile devices download experiments and upload col-
lected metrics to MITATE servers also using encryption. Finally, third, our XML
experiment configuration is static in that it does not allow conditional, nor jump
statements. Such static definitions enforce the separation between the on-device
functionality of data transmission and off-device processing. This separation al-
lows for static checking of XML configurations using mature schema verification
tools, which is simpler than dynamic code analysis and more lightweight than
mobile code sandboxing. Static experiment definition also allows for the volume
of each transfer in the XML file to be added up and compared against user credit
and device resource limits.

Protecting non-MITATE Resources Our final goal is to protect non-
MITATE resources, for example from DDoS attacks configured as MITATE
experiments. ScriptRoute, designed from the ground up as a secure Internet
measurement system, considers two types of malicious experiments: magic pack-
ets and traffic amplification [10]. Magic packets can disrupt legitimate traffic,
for example, when a spoofed FIN packet closes a TCP connection. Because MI-
TATE allows experiments with explicitly defined packet content, we will make
sure that these packets do not pose threats to other systems by matching them
against signatures of known exploits using intrusion detection mechanisms.

Traffic amplification takes place when a malicious user leverages testbed
nodes to monopolize the resources of a legitimate service, for example through
a Smurf attack. Existing testbeds limit traffic amplification by placing a rate
limit on the volume of data that can be generated by an experiment, which also
constrains legitimate load testing. Instead, MITATE limits the total volume of
experiment data to a user’s earned credit. Although a MITATE user may request
that multiple devices send data simultaneously, the user’s credit will be rapidly
depleted, and so even if the transmissions are malicious, they will be short-lived.

4 MITATE Application Traffic Prototyping Capability

To demonstrate MITATE’s traffic emulation capabilities we present a set of net-
work experiments and collected data. We show that MITATE can elicit various
network performance phenomena useful to developers in answering a wide range
questions about application traffic performance. The collected data includes traf-
fic performance metrics and associated metadata. Prior to sending experiment



MITATE 9

Fig. 4. Message delay vs. message size at
10 AM on CSP 1 to a CA datacenter.

Fig. 5. Message delay vs. message size at
2 PM on CSP 1 to a CA datacenter.

Fig. 6. Message delay vs. message size at
10 AM on CSP 2 to a CA datacenter.

Fig. 7. Message delay vs. message size at
10 AM on CSP 2 to a VA datacenter.

Fig. 8. Per packet throughput of BitTor-
rent and random payloads on CSP 1.

Fig. 9. Packet loss of SIP and random
payloads vs. flow data rate on CSP 1.

Fig. 10. Delay of different data rate flows
vs. on CSP 1 and CSP 2.

Fig. 11. Round trip time and transfer
time of 3 MB image from three CDNs.



10 Utkarsh Goel et al.

traffic, MITATE calculates the clock offset between the mobile and measure-
ment servers, which allows us to time unidirectional (unacknowledged) UDP
transfers [31]. Experiments were performed on several Android phones and two
different cellular service providers (CSP) networks in Bozeman, MT, and over
connections to two different cloud datacenters. We anonymize the identities of
CSPs and CDNs.

4.1 Effect of Packet Size on Message Delay

In gaming applications game state updates need to be delivered while their
content is relevant. And so, game developers may want to know: “What is the
largest game state update message that can be reliably delivered under 100 ms?”
To answer that question we configure a MITATE experiment with transfers of
increasing size (bytes). We plot the results in Figures 4–7, which show message
delay as a function of message size during different times of day.

Our results show that message delay increases with message size and does so
more rapidly on the uplink, likely due to asymmetric network provisioning. We
also observe in Figure 5 a high delay for larger messages on the downlink, likely
due to mid-day network congestion. Figure 6 shows a higher sensitivity of mes-
sage delay to size on CSP 2. That effect is especially pronounced on connections
to a datacenter located in Virginia, shown in Figure 7.

From these experiments a developer might conclude that a message of
320 B can be delivered under 100 ms with high confidence to customers in
Bozeman, MT on CSP 1, but a smaller message might be needed on CSP 2. Also,
to keep message delay low, requests from Bozeman should not be directed to the
Virginia datacenter.

4.2 Effect of Traffic Shaping

The degree to which FCC net neutrality rules apply to CSPs continues to be
debated [32]. And so, application developers may want to ask: “Does my appli-
cation traffic need to contend with CSP traffic shaping mechanisms?” To answer
that question we configure a series of MITATE experiments, in which transfers
of specific content, on specific ports, and at different rates are used to detect
traffic shaping [5, 33].

Figure 8 shows downlink throughput on CSP 1 of consecutive BitTorrent and
random payloads transmitted over UDP on tracker port 6969. Our results show
a drop in throughput for well-formed BitTorrent packets relative to random
content, which likely indicates the presence of DPI mechanisms. We did not
detect similar throughput drops on CSP 2. These results show that embedding of
explicit packet payloads allows MITATE to detect content based traffic shaping.

Figure 9 shows downlink percent packet loss on CSP 1 of 1000 SIP packets
transmitted on port 5060 over UDP and TCP versus transmission rate. Our
results show that while SIP packets over TCP are undisturbed, same packets
over UDP experience close to 60% loss rate. Because loss remains nearly constant



MITATE 11

across transmission rates, we believe that SIP packet loss over UDP is due to
traffic policing, rather than traffic shaping.

Figure 10 shows per packet delay of uplink UDP flows transmitted at 4 Mbps
and 6.6 Kbps on CSP 1 and CSP 2 versus packet number. The 4 Mbps flows expe-
rience an increase in delay, likely from queueing that results from the mismatch
between sending and token bucket service rate limits [5]. The 6.6 Kbps flows, on
the other hand, are sent below the service rate and avoid self-induced congestion.
Testing different transmission rates allows developers to determine the maximum
sending rate that will fall below token generation rate and avoid queuing delays.
The experiments are useful for configuration of adaptive video stream encoding.

4.3 Measurement Based CDN Selection

Finally, dynamic content applications customize content for each user and have
the opportunity to adapt to user’s network conditions, for example, by embed-
ding links to static content in different CDNs. And so, application developers
may want to ask: “Which CDN provides fastest downloads through a particular
mobile service provider’s network peering points?” To answer that question we
configure a MITATE experiment that sends a well-formed HTTP GET requests,
configured in the bytes tag, for an image hosted in three different CDNs.

Figure 11 shows the CDN response time for the first bit, or round trip
time (RTT), and last bit, or transfer duration, of a 3 MB image delivered over the
two CSP networks. Our results show a lower last bit delay for requests in CSP 1,
but a higher RTT variation between CDNs, likely due to different CSP peer-
ing points that lead to CDN servers. From these experiments a developer might
conclude that for users in Bozeman, MT CDN 2 provides the best combination
of performance across the two CSP networks.

5 Discussion and Future Work

In this paper we described MITATE, the first public testbed that supports pro-
totyping of application communications between mobiles and cloud datacenters.
MITATE separates application logic from traffic generation, which simplifies se-
curity and resource sharing mechanisms. We have presented data collected with
MITATE experiments that demonstrates the system’s capability in eliciting ef-
fects of cellular network performance on mobile application message delay.

Future work on the project involves deploying the current implementation
onto M-Lab servers. In the meantime, we invite the community to use publicly
available MITATE code5 in private deployments. We also welcome community
participation in evolving MITATE functionality in the areas of resource sharing
models, GPS and accelerometer data anonymization, data visualization, and
tools based on the MITATE platform.

References

[1] K.-T. Chen, P. Huang, and C.-L. Lei, “Effect of network quality on player departure behavior
in online games,” Parallel Distributed Systems, vol. 20, pp. 593–606, May 2009.

5
http://github.com/msu-netlab/MITATE



12 Utkarsh Goel et al.

[2] D. Geerts, I. Vaishnavi, R. Mekuria, O. van Deventer, and P. Cesar, “Are we in sync?: synchro-
nization requirements for watching online video together,” in SIGCHI Conference on Human
Factors in Computing Systems, May 2011.

[3] K. Winstein, A. Sivaraman, and H. Balakrishnan, “Stochastic forecasts achieve high throughput
and low delay over cellular networks,” in USENIX NSDI, Apr. 2013.

[4] E. Zohar, I. Cidon, and O. O. Mokryn, “Celleration: loss-resilient traffic redundancy elimination
for cellular data,” in Workshop on Mobile Computing Systems (HotMobile), Feb. 2012.

[5] P. Kanuparthy and C. Dovrolis, “ShaperProbe: end-to-end detection of ISP traffic shaping using
active methods,” in ACM IMC, Nov. 2011.

[6] X. Lu, W. Cao, X. Huang, F. Huang, L. He, W. Yang, S. Wang, X. Zhang, and H. Chen,
“A real implementation of DPI in 3G network,” in Global Telecommunications Conference
(GLOBECOM), Dec. 2010.

[7] M. P. Wittie, V. Pejovic, L. Deek, K. C. Almeroth, and B. Y. Zhao, “Exploiting locality of
interest in online social networks,” in ACM CoNEXT, November 2010.

[8] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and M. Bowman,
“PlanetLab: an overlay testbed for broad-coverage services,” SIGCOMM Computer Commu-
nications Review, vol. 33, pp. 3–12, July 2003.

[9] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris, “Experience with an evolving
overlay network testbed,” SIGCOMM CCR, vol. 33, pp. 13–19, July 2003.

[10] N. Spring, D. Wetherall, and T. Anderson, “Scriptroute: A public Internet measurement facil-
ity,” in USENIX Symposium on Internet Technologies and Systems (USITS), Mar. 2003.

[11] C. R. J. Simpson and G. F. Riley, “NETI@home: A distributed approach to collecting end-to-
end network performance measurements,” in ACM PAM, Apr. 2004.

[12] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, “In VINI veritas: Realistic and
controlled network experimentation,” in ACM SIGCOMM, Aug. 2006.

[13] M. Dischinger, A. Haeberlen, I. Beschastnikh, K. P. Gummadi, and S. Saroiu, “SatelliteLab:
Adding heterogeneity to planetary-scale network testbeds,” in ACM SIGCOMM, Aug. 2008.

[14] D. R. Choffnes, F. E. Bustamante, and Z. Ge, “Crowdsourcing service-level network event
monitoring,” in ACM SIGCOMM, Aug. 2010.

[15] J. Manweiler, S. Agarwal, M. Zhang, R. Roy Choudhury, and P. Bahl, “Switchboard: A match-
making system for multiplayer mobile games,” in ACM MobiSys, June 2011.

[16] “Geni.” http://www.geni.net/, Oct. 2012.
[17] “FIRE: Future Internet Research and Experimentation.” http://www.ict-fire.eu/, July 2013.
[18] M. A. Sánchez, J. S. Otto, Z. S. Bischof, D. R. Choffnes, F. E. Bustamante, B. Krishnamurthy,

and W. Willinger, “Dasu: Pushing experiments to the Internet’s edge,” in USENIX NSDI, Apr.
2013.

[19] “Archipelago measurement infrastructure.” http://www.caida.org/projects/ark/, June 2013.
[20] “Ripe atlas.” http://atlas.ripe.net/, July 2013.
[21] M. P. Wittie, B. Stone-Gross, K. C. Almeroth, and E. M. Belding, “MIST: Cellular data net-

work measurement for mobile applications,” in Conference on Broadband Communications,
Networks and Systems (BROADNETS), Sept. 2007.

[22] M. Austin and M. Wish, “The official story on AT&T Mark the Spot.” http://www.research.
att.com/articles/featured_stories/2010_09/201009_MTS.html, Oct. 2010.

[23] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and P. Bahl, “Anatomizing application
performance differences on smartphones,” in ACM MobiSys, June 2010.

[24] MobiPerf, “Welcome to MobiPerf.” http://www.mobiperf.com/home, Feb. 2012.
[25] “ROOT Metrics.” http://www.rootmetrics.com/, July 2013.
[26] A. Gember, A. Akella, J. Pang, A. Varshavsky, and R. Caceres, “Obtaining in-context mea-

surements of cellular network performance,” in ACM IMC, Nov. 2012.
[27] R. Baldawa et al., “PhoneLab: A large-scale participatory smartphone testbed,” in USENIX

NSDI poster session, Apr. 2012.
[28] J. Gao, A. Sivaraman, N. Agarwal, H. Li, and L. Peh, “DIPLOMA: Consistent and coher-

ent shared memory over mobile phones,” in International Conference on Computer Design
(ICCD), Sept. 2012.

[29] B. Cohen, “Incentives build robustness in BitTorrent,” in International workshop on Peer-To-
Peer Systems (IPTPS), Feb. 2003.

[30] V. Paxson, J. Mahdavi, A. Adams, and M. Mathis, “An architecture for large scale Internet
measurement,” IEEE Communications, vol. 36, pp. 48–54, Aug. 1998.

[31] D. L. Mills, “Network Time Protocol (version 2) specification and implementation.” Network
Working Group Request for Comments: 1119, Sept. 1989.

[32] M. Ammori, “The next big battle in Internet policy.” http://www.slate.com/articles/
technology/future_tense/2012/10/network_neutrality_the_fcc_and_the_internet_of_things_
.html, Oct. 2012.

[33] M. Dischinger, M. Marcon, S. Guha, K. P. Gummadi, R. Mahajan, and S. Saroiu, “Glasnost:
enabling end users to detect traffic differentiation,” in USENIX NSDI, Apr. 2010.


