
Quality Assurance of a Mobile Network Measurement
Testbed Through Systematic Software Testing

Utkarsh Goel, James Espeland, Upulee Kanewala, and Mike P. Wittie
Department of Computer Science, Montana State University, Bozeman, MT USA 59717

{utkarsh.goel, james.espeland, upulee.kanewala, mwittie}@montana.edu

Abstract

The popularity of innovative mobile applications that
offer services such as Web browsing, video streaming,
online gaming, and collaborative communication puts
utmost pressure on mobile application developers
to ensure a high quality user experience. As such,
the research and development communities have
developed several networking testbeds that measure
the performance of application traffic in production
cellular networks. In this paper, we evaluate the
quality of the source code of one of the mobile network
measurement testbeds (MITATE) using multiple
software testing techniques. Our extensive testing
experience with MITATE’s source code indicates that
network measurement testbeds are complex in their
functionality and require multiple software components
to interact with each other for any given operation.
We demonstrate that using multiple testing techniques
results in different types of issues with the code under
test. Finally, based on our results, we make changes
to MITATE’s source code and argue that MITATE,
in production, offers high reliability and accuracy in
executing network experiments.

Keywords: Black-box, mutation, testing, MITATE

1 Introduction
Software developers build interactive applications to

attract and retain a large user base [25]. To ensure
high engagement of users with their applications,
developers employ sophisticated software development
techniques that offer high quality user interfaces and
easy navigation of the software [31]. As applications
become popular, measurement of user-experience with
the applications also becomes equally important.
Specifically, applications that require network
connections tend to work differently under different
network environments [30]. Therefore, understanding
the performance of applications under various network
conditions (such as on wired networks, cellular
networks, or Wi-Fi) enables developers to develop
customized application logic based on how a given
communication protocol performs in any one network

condition. As shown in Table 1, applications such
as online gaming, remote equipment operations,
collaborative communication, and interactive
artificial intelligence systems have different network
requirements such as low end-to-end latency, low
jitter, high throughput, and low packet loss. When
these requirements are not met by the network,
applications fail to offer a high quality experience to
users. Therefore, developers should perform careful
measurements of their applications and identify
communication protocols that allow applications to
perform reliably in networks with poor performance.

To perform large scale measurement of application
performance, developers require tools that allow
accurate analysis of the application performance under
different network conditions. Although the networking
research communities have developed several testbeds
to rigorously measure application performance
under different network scenarios [11, 12, 13, 28],
developers often lack awareness as to which tool to
use for testing the performance of their applications.
Mobile Internet Testbed for Application Traffic
Experimentation (MITATE) is the first testbed that
allows developers to prototype application traffic, such
as traffic from online games, social networks, and video
streaming [30]. MITATE offers real-world performance
testing of custom mobile applications, that network
emulators and many other network measurement tools
are not designed to offer [28]. In order to guarantee
the appropriate functionality and operation of the
MITATE software, in this paper we apply several
systematic software testing techniques to the MITATE
codebase. Specifically, we classify the four major
contributions of this work as follows:

Novelty: In this paper we offer to the software testing
community an understanding of how a mobile network
measurement platform works, in terms of different
software components that may be involved during
execution of network experiments. We then provide
an understanding of how various software testing
techniques could be applied towards testing different
components of a testbed written in several program-
ming languages, as opposed to standalone applications.

Application Type Network Latency Jitter Throughput Packet Loss

Online Gaming 100− 500ms [27, 38] 0.2− 1.5Mbps [1, 2, 5] < 1% [33]
Interactive Communication 100− 300ms [4, 37, 24] < 20ms [37] 0.1− 8Mbps [3, 38] 0.1%− 2% [37]
Remote Equipment Operations 300− 800ms [39] < 0.1% [37]
Interactive AI Systems < 7− 15ms [32, 21]

Table 1: Application requirements for a high-quality user experience.

Black-box
Testing

Mutation Testing

Shell
Script

No errors
thrown for
extra input.

Discovered a functionally
equivalent mutant.
Mutation Score: 93.33%

PHP
Code

No human
readable errors
thrown for
invalid input.

Identified misspelled variable
names, several surviving
mutants.
Mutation Score: 88.6%

Table 2: Results from Black-box and Mutation testing.

Programs under test: To analyze the quality of
MITATE software, we first identify code files that
possess high risk in the operation of MITATE as a
networking testbed. Specifically, we selected software
components that allow developers to interact with
the MITATE backend servers. The first selected
component is a Shell script that presents MITATE’s
command line API and is the only interface through
which developers can configure and upload network
experiments for MITATE to execute on various mobile
devices. The second component we select is a PHP
code file that allows MITATE to rigorously validate the
user experiment before it can be stored on MITATE
servers and sent to mobile devices for execution.

In our testing of the above selected MITATE com-
ponents, we perform black-box and mutation testing
on both the Shell and PHP code. The Shell file has a
McCabe Cyclomatic Complexity of 47 and consists of
about 230 lines of code with 27 if conditions, two for

loops, one while loop, and five function calls. The PHP
file has a McCabe Cyclomatic Complexity of 82 and
consists of about 250 lines of code with 39 if conditions,
five for loops, five while loops, and three function
calls [40]. Finally, by analyzing call and control flow
graphs of the Shell and PHP code files, we also represent
the complexity of a networking testbed in general.

Test Results: During our experience of employing
black-box and mutation testing techniques to
MITATE’s source code, we make the following
four observations:

• Our application of black-box testing on the
Shell script discovered no faults in the code.
However, we discovered that for invalid input
arguments (more than three arguments) to the
Shell command line API, the code does not
generate any error message to the user which may

help the user to correct the command.

• From our application of mutation testing on
the Shell script using 15 mutants, we had only
one surviving mutant that we identified as a
functionally equivalent mutant due to how the
logic of the Shell script is designed.

• We employed black-box testing on the PHP code
and observed that for several invalid inputs, the
PHP code did not throw a human-readable error.
However, a system-library-generated error was
thrown.

• Finally, our application of mutation testing on
the PHP code using 44 mutants resulted in five
surviving mutants of which two were due to
misspelled variable names.

We summarize the results from our black-box and
mutation testing in Table 2. Based on the observations
about the code we made from our testing, we corrected
MITATE’s source code such that all of our test cases
pass in secondary testing of the code using the same
test suite. Moreover, our corrections to MITATE’s
source code left no errors unresolved that we identified
during our primary testing.

Inferences Drawn: Based on our experience with
different software testing techniques on MITATE’s
source code, our conclusions are twofold.

• We conclude that a single software testing tech-
nique may not be sufficient to detect and resolve
different types of issues in the code. For example,
although mutation testing is used for testing
the completeness of the test suite, our mutation
testing also lead us to detect bugs in the code.

• Our work in this direction allows the mobile
application developer community to embrace
more confidence in the reliability and quality
of the MITATE testbed, which would result in
development of mobile applications with high user
satisfaction.

The rest of the paper is organized as follows. In
Section 2, we provide an overview of MITATE as a net-
work measurement testbed. In Section 3, we describe
MITATE’s source code. In Sections 4 and 5, we discuss
our application of black-box and mutation testing on
the Shell script and PHP code file respectively. In
Section 6, we discuss some potential threats to validity
of our work on testing a mobile network measurement
testbed. Finally, we conclude in Section 7.

Measurement
Servers

DB Server

Cell Tower

WiFi AP

Public Internet

A

B

2. Query for new experiments

3. Experiment traffic
4. Traffic
metrics

Web Server

5. Exp. result data

1. Exp. configuration

Public Cloud
Instances

M-Lab Servers

Figure 1: MITATE system architecture and steps to execute network experiments [30].

2 Overview of MITATE

Mobile Internet Testbed for Application Traffic
Experimentation (MITATE) is the first-of-its-kind
testbed that allows mobile application prototyping in
production cellular networks [30]. MITATE is helpful to
any developer interested in measuring the performance
of their application on geographically distributed mo-
bile devices in different cellular networks worldwide.1

We depict the architecture of the MITATE testbed
in Figure 1. As shown in the figure, a mobile device
connects to the public Internet via either the subscribed
cellular network or a Wi-Fi network. The developer
prepares network traffic definition in the form of a well-
defined XML file. The traffic definition is comprised of
the packet content that needs to be exchanged between
the mobile device and the MITATE servers. The file
also consists of criteria such as when and which mobile
device should execute the experiment depending on
device location, battery status, and network signal
strength, among others. The developer then uploads
the XML file to MITATE’s database servers using
a Web interface (Step 1). Upon successful upload,
MITATE mobile clients poll for experiments for which
they meet criteria defined in the XML file (Step 2).
Next, (Step 3), MITATE mobile devices and servers
exchange network packets. After the experiment
finishes, MITATE servers record data representing
network performance (in terms of latency, throughput,
and jitter) in the database (Step 4). Finally, the
measured network performance data is then available
to the developer through a Web interface (Step 5).

In general, the MITATE testbed is comprised of
four components: a mobile application, measurement
servers, a command line API, and Web servers. An
Android mobile client presents an interface to the users
to install and run MITATE on their mobile devices as a
background service. The measurement servers present
interfaces for mobile clients to exchange network traffic,
followed by recording of the measured data into the

1As of March 2016, MITATE is being deployed on Google’s
Measurement Lab [6] and Android Play Store [15].

database. The command line API is used to access
MITATE’s Web interface through which experiments
are uploaded and the measurement data is downloaded.
The Web server allows mobile clients to probe for
experiments for which the client meets the criteria.

The mobile application and measurement server code
is written in the Java programming language, whereas
the code for the Web server and command line API are
written in PHP and Shell script respectively. For the
purpose of this work, we perform testing on MITATE’s
most high-risk code, as opposed to testing MITATE’s
entirety of more than 9500 lines of code [10, 29].
Specifically, for the Web server, we tested the code
that allows a user to evaluate the correctness of an
XML file (representing the details of the experiment
that needs to be executed between the mobile app and
the measurement server) and then successfully upload
the file to MITATE backend servers [8]. Finally, we
tested a Shell script that allows developers to access
MITATE’s backend from a Linux terminal [7].

We argue that our decision to apply testing
techniques to only the Shell script and PHP code is in-
fluenced by the fact that the Shell script and PHP code
perform operations on input values directly defined
by users. The other two modules, the Android mobile
application and measurement server, do not interact
with user-defined values and only execute operations
once the data from the user has been correctly validated
and stored into the database. Given that the majority
of MITATE’s operations depend on user-defined input,
we therefore direct our software testing efforts to ensure
that the code responsible for validating user input and
correctly storing it in the database has no faults.

3 MITATE’s Source Code
MITATE is a complex system, similar to other mobile

network measurement testbeds, comprised of several
software components and services that need to interact
with each other in order to execute any operations.2

Therefore, in this section, we delve into understanding

2For interested readers, we make the entire MITATE source
code available to the public [29].

the complexity of different MITATE source code files
using analysis of Control Flow Graphs (CFGs) for
MITATE’s Shell and PHP Code.3

3.1 Shell Script

MITATE’s Shell script consists of approximately 230
lines of code, including 27 if statements, two for loops,
one while loop, and five function calls [7]. The CFG
for the Shell script has several basic blocks with varying
number of outgoing paths to other blocks. Specifically,
the Cyclomatic Complexity analysis of the Shell script
indicates that the edge count is 119, the node count is
86, and the number of connected components is 7 [40].
Using the formula for McCabe’s Cyclomatic Complex-
ity, M = E−N+2P , where E is the edge count, N is the
node count, and P is the connected components count,
we get a Cyclomatic Complexity score of 47 for the Shell
script, indicating that the Shell script is complex and
has high risks [26]. We argue that such a code file en-
ables us to perform a well-thought systematic testing of
the code and, in fact, evaluate the effectiveness of differ-
ent testing techniques because of its complexity in how
different code blocks interact with other blocks. We ar-
gue that given the number of predicates and loops in the
code, MITATE’s Shell script provides a unique oppor-
tunity to induce multiple mutations in the code when
tested with the production MITATE backend code.

The Shell script is called with commands
that consist of a single argument (help, login,
checkAvailableCredits, and logout), commands
that consist of two arguments (init, validate,
getExpCost, upload, makePublic, getExpStatus, and
delete), and a command that takes three arguments
(query). The first argument specifies the operation that
needs to be performed on the file or experiment ID spec-
ified by the second argument. For the two argument
commands, the second argument is always a file name
or an experiment ID. As shown in Figure 2, execution
of the help command lists all commands that the Shell
command supports along with appropriate arguments.

3.2 PHP Code

The PHP code file we select for testing allows the
MITATE testbed to validate a user’s uploaded XML
file that describes the experiment to be executed [9].
If the XML file is validated successfully, the PHP code
extracts the experiment data and uploads it into the
database. The PHP file consists of approximately 250
lines of code, including 39 if statements, five for loops,
five while loops, and three function calls [8]. Cyclo-
matic Complexity analysis of the PHP code indicates
that the edge count is 189, the node count is 133, and

3In a CFG, nodes represent blocks of continuous code and
edges represent branches [22].

Figure 2: List of Shell commands.

the number of connected components is 13, resulting in
a Cyclomatic Complexity score of 82 which indicates
that it is a very high-risk code. Again, the number
of connections between different code blocks indicates
that the process of validating and uploading MITATE’s
XML input file is complex and thus motivates the need
for using different software testing techniques.

Given the complexity of selected components in
MITATE’s source code, our first goal is to identify
whether or not the individual components generate
correct results when given predetermined input values.
Next, for any input value for which the code does not
generate correct results, our goal is to identify specific
lines of code that pertain to generation of incorrect
results.

4 Black-box Testing
The first software testing technique we use to analyze

the Shell script and the PHP code is black-box testing
which creates test cases based only on the external spec-
ifications of the software [23]. The Shell script takes in-
puts in different forms, such as plain text and XML files.
Therefore, our application of black-box testing is based
on injecting different inputs to the Shell script and ver-
ifying the output using a predefined input and correct
output values (which we refer to as the Oracle) [9]. For
PHP code, we also inject varying XML files as input.
These input XML files vary in terms of correctness of
XML tags and definition of network experiments.

4.1 Shell Script

As stated earlier, the Shell script takes commands
with one argument, two arguments, and three argu-
ments. Therefore, we classify the domain of the input
space for testing Shell script into 11 partitions, as shown
in Table 3. To correctly partition the input space,
we ensure that the union of all the partitions covers
the entire domain of test inputs, as well as that the
intersection of each pair of partitions results to null.

#
Args.

Partition
Number

Remark

0 P1 No arguments.

1
P2 Argument is valid.
P3 Argument is invalid.

2

P4 Both arguments are valid.
P5 First argument is invalid.

P6
First argument is valid,
the second is invalid.

P7
First argument is valid,
the second is empty.

3
P8 All arguments are valid.

P9
First and second arguments
are valid and the third
argument is invalid.

P10
First and third arguments are
valid and the second argument
is invalid.

>3 P11
First, second, and third
arguments are valid.

Table 3: Input partitions for Black-box testing of Shell.

Using these partitions, we use a Combinatorial testing
technique to generate different input argument com-
mands and compare the output of these commands with
the Oracle one-by-one [36]. Specifically, we generate
test cases that contain all possible combinations of the
input arguments to the Shell script. For example,
the login command runs as a standalone operation.
Therefore, for any other operation added to the login

command, such as upload or delete, the Shell script
must throw an error stating that the command was
invalid. Using Combinatorial testing, we ensure that
our test cases contain commands with arguments that
are logically valid and invalid according to the Oracle.

Results from our application of black-box testing of
the Shell script shows that for Partitions 1 through 11,
we did not observe any difference in the output, when
compared to the Oracle. However, for Partition 11, we
found that for commands with number of arguments
more than 3, no error is thrown. In general, no error
is thrown for the inclusion of extraneous arguments.

For example,
$> ./mitate.sh login <random data>
ignores the <random data> and throws no error.
We rewrote the logic of the command line API
such that an appropriate error is now thrown when
extraneous arguments are passed to the Shell script.
The changes to the Shell script can be seen by visiting
this reference [17]. After the changes to the code, we
repeated the black-box testing with the same input
partitions and observed that the output for all input
partition values matched the values from the Oracle.

Partition
Number

Remark

P1 Empty XML file.
P2 Valid XML file.
P3 XML file with invalid tags.

P4
XML file where integer values
are replaced with character values.

P5
XML file where character values
are replaced with integer values.

P6 XML file with extra tags.

Table 4: Input partitions for Black-box testing of PHP.

4.2 PHP Code

We now perform black-box testing of the PHP code
by injecting errors into the input XML file. Based
on the XML input specification [9], we identified six
different input partitions for black-box testing of the
PHP file, as shown in Table 4. We argue that since the
input XML file could have any number of tags, it would
be challenging to test all possible combinations of the
XML tags, with combinations ranging from 2 tags to
a significantly large number. Therefore, to generate
a test-suite for testing the PHP code, we choose
to manually perform Combinatorial testing where
we create multiple combinations of XML tags that
represent valid and invalid experiment configurations.

Our results from black-box testing of the PHP code
indicates that when the input XML file is valid, the
PHP code generates a valid output. However, when
the input XML file is invalid, the PHP code does not
validate the file but also does not output an error in
a human-readable format. Based on these findings, we
corrected the PHP code to output appropriate errors
whenever the input XML file is invalid. We repeated the
black-box testing with same input partitions on the new
PHP code and observed that for all input partitions,
the output of the PHP code matches with the Oracle.

5 Mutation Testing
The second software testing technique we apply to the

Shell script and PHP code is mutation testing, where
we inject errors (also called mutants) into the code and
identify whether the output of the code with injected
errors is different from the output of the original
code [35]. If the output from a mutant is different
for any test input, we say that the mutant is killed.
Otherwise, it has survived. We use mutation testing to
evaluate the effectiveness of the test-suite we created
from the input partitions during black-box testing.

5.1 Shell Script
To perform mutation testing of the Shell script,

we generated 15 mutants using a mutant clustering
selection technique based on whether conditional

statements were un-nested, nested, or multi-nested
inside other conditional statements [34]. Each of the
mutants indicates an undesired change to one of the
conditional statements in the code. Our decision to
create mutants only in the conditional statements is
due to the fact that the code performs all operations on
user-defined input values and that there are no hard-
coded values in the logic. Therefore, the conditional
statements in the code are the only statements that
could impact the overall output of the code. For
interested readers, we host the various mutants at [14],
where the file mitate.sh is the unaltered Shell script
and files m1.sh through m15.sh are the 15 mutant files.
In each mutant file, a change is made to only one of
the conditional statements in the code as identified by
a leading ’#’ sign with a comment that describes the
change. Results from our application of the mutation
testing on the Shell script show that all mutants, except
m4.sh, are killed using the same test inputs we used
during black-box testing. Since our test suite killed 14
out of 15 mutants, the mutation score is 93.33%.

The surviving mutant is a functionally equivalent
mutant, because the Shell script authenticates the
user before running any command. When the login

command is run, the Shell script checks by default
if the user is already logged in and a function that
prints whether the user is valid or not is called with a
parameter that disallows outputting the authentication
message. When the login command is then executed,
the function that prints whether or not the user is
valid or not is called with a parameter that allows
outputting the authentication message. So the function
is called once with a parameter that disallows output
and another time with a parameter that allows output.
The surviving mutant is where a change was made
to the code that determines whether to output the
message or not. Since the function is called once
with a parameter disallowing the output and another
time with a parameter allowing the output, the same
message is output once in both the original Shell script
and the mutated Shell script. Therefore, it is not
possible to tell which call of the function resulted in
the output by just using mutation testing.

5.2 PHP Code

We choose to conduct mutation testing of the PHP
code manually, as opposed to using an automated
software tool such as Humbug [16]. Humbug
automatically generates mutants from the input
PHP source files. It then applies a given test-suite
to the original source code and the mutated files to
calculate how many mutants the test-suite kills. We
argue that MITATE is a complex system that requires
many different types of code files to be executed
simultaneously. Therefore, we prefer to test MITATE’s

functionality in its real world deployment and thus
we argue that simulating a virtual environment with
Humbug may not reflect any code-related issues that
may exist in the real world deployment of MITATE.

To perform mutation testing of the PHP code, we
generated 44 mutants where each mutant represents an
undesired change to one of each of the conditional state-
ments. The conditional statements that were changed
were either if statements or while statements. All of
the for loops in the code were actually foreach loops
where the code was looping through the contents of ar-
rays. As such, the foreach loops did not contain condi-
tional statements and were therefore not included in the
scope of our mutation testing. Since we generated mu-
tants for all of the conditional statements in the code,
our technique to generate mutants implies that we also
offer complete branch coverage with our test-suite. For
interested readers, we host the different PHP mutant
files at [18], where the mitate upload experiment.php

file is the original file with no mutations and files p1.php
through p44.php are the mutant files that we generated
manually. For readability, we identify the mutant in
each file by a leading ’#’ sign in the code. We also host
our test input files comprised of the Shell scripts and
XML input files for each of the 44 mutant files [19, 20].

To detect whether or not the various mutants were
killed during our testing of the PHP code, we in-
spect the accuracy of the outputs from the MITATE
Shell script and the database table corresponding to
the operation. Our results show that our applica-
tion of mutation testing killed all mutants, except for
the mutants present in the files p16.php, p30.php,

p35.php, p43.php, and p44.php. Specifically, we
killed 39 out of 44 mutants during our first round of mu-
tation testing, resulting in a mutation score of 88.6%.

Next, we inspected the code for the five surviving mu-
tants. We identified that there were two different rea-
sons as to why some mutants survived. Firstly, we iden-
tified that there were two minor bugs in the code due
to spelling errors concerning variable names (as shown
in p30.php and p44.php [18]). To resolve this first
issue, we corrected the variable names. Secondly, we
identified that some mutant code could not be reached
due to how the logic was written in the PHP file. To
resolve this issue, we refactored the code in the PHP
files p16.php and p43.php so that the mutants become
reachable while ensuring that the code functionality was
not altered. We also added an else clause in p35.php

to allow the corresponding mutant to be reached and
ultimately killed. Finally, we repeated the mutation
testing with the same input Shell scripts and XML files,
during which we killed all the surviving mutants from
the first round, resulting in a mutation score of 100%.

6 Threats to Validity

Internal validity: Given that some of the authors of
this paper developed MITATE, we acknowledge that
our test-suite selection may be biased towards our
detailed understanding of the source code.

External validity: Although we highlight several
features of a network measurement testbed in general,
we do not claim that a similar infrastructure is
used by other popular testbeds in the networking
community. For example, while the MITATE mobile
application runs as a background service on mobile
devices, mobile applications of other testbeds run
active experiments [28], and thus the source code
would differ among these testbeds.

Conclusion validity: We argue that with our testing,
we have increased confidence in the quality of MITATE
as shown in Sections 4 and 5, however a threat to
conclusion validity exists because we did not test the
entirety of the MITATE source code.

Construct validity: Other software testing
techniques may have uncovered issues in the tested code
that we could not detect using black-box and mutation
testing. However, we have no way of knowing this unless
we apply other testing techniques. Finally, during our
testing we assumed that the Internet connection was al-
ways available between different MITATE components.
Therefore, another threat to construct validity exists
because we did not analyze MITATE’s quality when
Internet connections were randomly disconnected.

7 Conclusions

Despite several years of research, mobile application
performance remains a major concern for mobile
developers. Therefore, developers are motivated to
perform careful analysis of application performance in
different network conditions. In this paper, we offer
an understanding of how software testing techniques
could be applied to test network measurement tools.
Specifically, we apply sophisticated software testing
techniques to a large mobile network measurement
testbed (MITATE) to perform source code analysis and
investigate its correctness. Results from our analysis
illustrate that several software testing techniques
should be used to uncover different types of issues with
the code, such as misspelled variable names, equivalent
mutants, and sub-optimal conditional statements. For
example, in our testing, black-box testing alone did
not uncover as many defects as we discovered using
a combination of black-box and mutation testing.
Finally, based on our testing results and modifications
to the source code of MITATE, we argue that MITATE
now offers even better reliability and accuracy in the
execution of network experiments.

Acknowledgments
We thank Kanika Shah and the anonymous reviewers

for providing us constructive feedback. We also thank
National Science Foundation (NSF) for supporting this
work through grants NSF CNS-1555591 and NSF CNS-
1527097.

References

[1] Activision Bandwidth requirements for BO2? https:

//community.callofduty.com/thread/200620392.

[2] Call of Duty: Ghosts PC Minimum System
Requirements. https://community.callofduty.com/

community/call_of_duty/english/ghosts/blog/

2013/10/23/call-of-duty-ghosts-pc-system-

requirements, month = Oct, year = 2013.

[3] How much bandwidth does Skype need?
https://support.skype.com/en/faq/FA1417/how-

much-bandwidth-does-skype-need, month = Aug,
year = 2014.

[4] Latency (audio). http://en.wikipedia.org/wiki/

Latency_%28audio%29, month = Aug, year = 2014.

[5] Types of Broadband Connections. http:

//www.broadband.gov/broadband_types.html, month
= Oct, year = 2013.

[6] Measurement Lab (MLab). http://www.

measurementlab.net/, Sept. 2013.

[7] MITATE Shell Script - Command Line API.
https://github.com/msu-netlab/MITATE/blob/

master/WebServer/sample/mitate.sh, Mar. 2013.

[8] MITATE Validate Experiment. https://github.

com/msu-netlab/MITATE/blob/master/WebServer/

mitate_upload_experiment.php, Mar. 2013.

[9] Tutorial to MITATE: Mobile Internet Testbed
for Application Traffic Experimentation. http:

//mitate.cs.montana.edu/sample/MITATE_User_

Manual_v1.0.pdf, Mar. 2013.

[10] GitStats - MITATE.git. http://www.cs.montana.edu/

~utkarsh.goel/MITATE-Stats/, Mar. 2014.

[11] Google Analytics. http://www.google.com/

analytics/, Aug. 2015.

[12] Real User Monitoring. https://www.akamai.com/

us/en/resources/real-user-monitoring.jsp, Aug.
2015.

[13] Real User Monitoring. http://www.keynote.com/

solutions/monitoring/real-user-monitoring, Aug.
2015.

[14] Directory of Mutants of MITATE Shell Script. https:
//github.com/ugoel/CSCI591_SoftwareTesting/

tree/master/shell_script_mutation, Mar. 2016.

[15] Google Play. https://play.google.com/store?hl=

en, Apr. 2016.

[16] Humbug Mutation Testing Framework for PHP.
https://github.com/padraic/humbug, Apr. 2016.

[17] Improved MITATE Shell Script - Command Line API.
https://github.com/msu-netlab/MITATE/commit/

490e7d9ad530544f636a0ba216ff4f34d864f7c6#diff-

d4de63485f52c21e797c2e1260db5aa8, Mar. 2016.

[18] PHP Mutant Files. https://github.com/ugoel/

CSCI591_SoftwareTesting/tree/master/php_code_

mutation, Apr. 2016.
[19] PHP Mutant Files. http://mitate.cs.montana.edu/

test/shell/, Apr. 2016.
[20] PHP Mutant Files. http://mitate.cs.montana.edu/

test/xml/, Apr. 2016.
[21] M. Abrash. Latency – the sine qua non of AR

and VR. http://blogs.valvesoftware.com/abrash/

latency-the-sine-qua-non-of-ar-and-vr/, 2012.
[22] Frances E. Allen. Control flow analysis. In Proceedings

of a Symposium on Compiler Optimization, pages 1–19,
New York, NY, USA, 1970. ACM.

[23] Paul Ammann and Jeff Offutt. Introduction to Software
Testing. Cambridge University Press, New York, NY,
USA, 1 edition, 2008.

[24] G. Armitage. An experimental estimation of latency
sensitivity in multiplayer Quake 3. In International
Conference on Networks, 2003.

[25] Andreas Bernstom. How to attract users to your app
and go platinum. http://venturebeat.com/2012/02/

24/four-tips-on-how-to-attract-users-to-your-

app/, Feb. 2012.
[26] Reg. Charney. Programming Tools: Code Complexity

Metrics. http://www.linuxjournal.com/article/

8035, Jan. 2005.
[27] Mark Claypool and Kajal Claypool. Latency and

Player Actions in Online Games. Commun. ACM,
49(11), November 2006.

[28] U. Goel, M.P. Wittie, K.C. Claffy, and A. Le.
Survey of End-to-End Mobile Network Measurement
Testbeds, Tools, and Services. Communications
Surveys Tutorials, IEEE, 18(1):105–123, Firstquarter
2016.

[29] Utkarsh Goel, Ajay Miyyapuram, and Mike P. Wittie.
MITATE: Mobile Internet Testbed for Application
Traffic Experimentation. https://github.com/msu-

netlab/MITATE/, Mar. 2013.
[30] Utkarsh Goel, Ajay Miyyapuram, Mike P Wittie,

and Qing Yang. MITATE: Mobile Internet Testbed
for Application Traffic Experimentation. In Mobile
and Ubiquitous Systems: Computing, Networking, and
Services, pages 224–236. Springer, 2013.

[31] S. Halle, N. Bergeron, F. Guerin, and G. Le Bre-
ton. Testing Web Applications Through Layout
Constraints. In International Conference on Software
Testing, Verification and Validation (ICST), April
2015.

[32] O. Hansen. The biggest problem in Augmented Reality:
Latency. https://identifeye.wordpress.com/

2013/01/03/the-biggest-problem-in-augmented-

reality-latency/, 2013.
[33] E. Howard, C. Cooper, M. P. Wittie, S. Swinford, and

Q. Yang. Cascading Impact of Lag on User Experience
in Multiplayer Games. In USENIX Symposium
on Networked Systems Design and Implementation
(NSDI), April 2013.

[34] Shamaila Hussain. Mutation Clustering.
http://www0.cs.ucl.ac.uk/staff/mharman/

PastMScProjects2007/ShamailaHussain.pdf, 2008.

[35] Yue Jia and Mark Harman. An Analysis and Survey
of the Development of Mutation Testing. IEEE Trans.
Softw. Eng., 37(5), September 2011.

[36] D. Richard Kuhn, Raghu N. Kacker, and Yu Lei.
Introduction to Combinatorial Testing. Chapman &
Hall/CRC, 1st edition, 2013.

[37] K. Lynch. Is your network ready to handle
videoconferencing? http://www.techrepublic.

com/blog/data-center/is-your-network-ready-

to-handle-videoconferencing/, month = Jul, year
= 2009.

[38] B. Mitchell. How Fast Does Your Network Need To Be?
http://compnetworking.about.com/od/speedtests/

tp/how-fast-does-your-network-need-to-be.htm.
[39] Reiza Rayman, Serguei Primak, Rajni Patel, Merhdad

Moallem, Roya Morady, Mahdi Tavakoli, Vanja
Subotic, Natalie Galbraith, Aimee van Wynsberghe,
and Kris Croome. Effects of Latency on Telesurgery:
An Experimental Study. In Medical Image Computing
and Computer-Assisted Intervention – MICCAI 2005,
volume 3750 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2005.

[40] Arthur H. Watson and Thomas J. McCabe. Structured
Testing: A Testing Methodology Using the Cyclomatic
Complexity Metric . http://www.linuxjournal.com/

article/8035, Sept. 1996.

