US 20230179435A1

a2y Patent Application Publication o) Pub. No.: US 2023/0179435 A1l

a9y United States

Heinecke et al.

43) Pub. Date: Jun. 8, 2023

(54) SYSTEM AND METHOD FOR CREATING
AND MAINTAINING IMMUTABILITY,
AGREEMENT AND AVAILABILITY OF DATA

(71) Applicant: Blocky, Inc., Bozeman (MT)

(72) Inventors: Taylor Heinecke, Bozeman, MT (US);
David L. Millman, Bozeman, MT
(US); Mike P. Wittie, Bozeman, MT
(US)

(21) Appl. No.: 18/072,574

(22) Filed: Nov. 30, 2022

Related U.S. Application Data

(60) Provisional application No. 63/286,382, filed on Dec.
6, 2021.

Publication Classification
(51) Int. CL

HO4L 9/00 (2006.01)
HO4L 9/06 (2006.01)
HO4L 9/32 (2006.01)

(52) US.CL
CPC oo HO4L 9/50 (2022.05); HO4L 9/0618
(2013.01); HO4L 9/3297 (2013.01)

(57) ABSTRACT

A method for creating and maintaining immutability, agree-
ment and availability of data including the steps of building
an alternating structure of blocks and timestamp attestations;
determining an order of blocks; determining which of the
blocks are on a main chain; and using a trusted replication
service to replicate all of the blocks, timestamp attestations,
sequence attestations, and leaves of the Merkle trees. A
computer program product comprising a storage device
storing instructions in a non-transitory manner, which
instructions cause the computing device to create and main-
tain immutability, agreement and availability of data accord-
ing to the foregoing method. A computing device compris-
ing a processing unit, memory or other storage device
coupled to the processing unit, the memory or other storage
device storage instructions, which cause the computing
device to create and maintain immutability, agreement and
availability of data according to the foregoing method.

8o reluem &

awad sedg
3 8u8 attasiaiy

Foveadn chadn blpek

et
¥

> Exteng the madn chaln

eopg pd 0 e

AR

I

S main

» No mare s

snhnal ssgusns

o
ol

Patent Application Publication Jun. 8, 2023 Sheet 1 of 7 US 2023/0179435 A1

Svinbol | Muaning e F""*r‘s‘nzii:‘ii Ty
a T Euclave attestation {ry K.q..
& A set of snclave attestations Lty €1y o
A Enclave Servige AWS Nitroe Enclave
5 Blork {1e, Y,

A A set of blogks 3{*}3\} 5} }
2 Bateh waunber uint

d Transactio
Certificate (b, K3, 4% 408
g Sigz;.atss:s:res bytel]
H ' 8 < hash funetion SHAZ

i 85 *m D uint

& C(}mﬁw valug aind
K+ /K~ | Public/private key bytel]/bytel]
Tr P Merkds tres bytel]

A E A set of Merkle trees {rmg, iy,)

b2 Physical elock reading wint

,u

pe

e

g

P User data iy g i:-y"é;fs{}

Seguence attestation Gk, {;H TECETE {{}
Sequencer Service Seguancer on A
““mm;;}fp :«3}‘1%‘&53&3‘%;;-;&%{)3‘1 {opoah = HB)

{vbx En w‘g\t fom of 3 with &
- PN B . N .. -
Pglyl Decrvption of y with X

FiG. 1

Patent Application Publication Jun. 8, 2023 Sheet 2 of 7 US 2023/0179435 A1

Farent instancs
4 yORU
8 GiB Memaory

Enclave
2 vOPU

TP H Proxy K \&{3{5@ Container
) Nan

o

Patent Application Publication Jun. 8, 2023 Sheet 3 of 7 US 2023/0179435 A1

3. B 4 P
SN Bt Bty
¥
.‘g‘ .3 .} :.l’ e }'

FIZ 3

Patent Application Publication Jun. 8, 2023 Sheet 4 of 7 US 2023/0179435 A1

Pk R

2 f
it

2

PG 4

Patent Application Publication Jun. 8, 2023 Sheet 5 of 7 US 2023/0179435 A1

{lsey

,

[

oy Fon i\
2. L0 3

R -
5. Hb) Timestamp
Servios

W Famey BN
& {m, b ¥ _
? o) 'l 3 T
Replination _ f“ 3t d ‘\i-}h Sequenner |
Sasios Storelt ¥ R Rareiee
DETVIOR G DEPVI
f.a

Fix B

Jun. 8,2023 Sheet 6 of 7 US 2023/0179435 Al

Patent Application Publication

e

vefurn

3

CUCKCEURENRNN

Fi. 8

¥83

N

th
2

g

PO TR

Patent Application Publication Jun. 8, 2023 Sheet 7 of 7 US 2023/0179435 A1

Algorithm makeCertificate(by, KT, H{d), M, 2}

1+ » Find the fivst block, after by with a Merkle tres
{'.?-‘\'}E'Efifé§:§‘-1§’.§4§.§‘}§ 'ilf.‘ 5:&?(3&3&3:2{??1} 1Y {.3, <

r ¥ e aw o Ly e T e PR i ‘
oo e dad L a4 2do
. : ,

4 »Found d in & 'E:}Eﬁ:}(_fk.. Retum a certificate. <
7
s

50 retwrn o, K H, 20011, 2Tl

& s{f& arn © ‘» No main chain block containg o

US 2023/0179435 Al

SYSTEM AND METHOD FOR CREATING
AND MAINTAINING IMMUTABILITY,
AGREEMENT AND AVAILABILITY OF DATA

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] Pursuant to 35 U.S.C. § 119(e), this application
claims prior back to U.S. Patent Application No. 63/286,382
filed on Dec. 6, 2021.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

[0002] This invention was made with government support
under Contract No. 2052375 to Blocky, Inc., awarded by the
National Science Foundation. The government has certain
rights in the invention.

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0003] The present invention relates generally to the field
of distributed ledger technologies, or blockchains, and, more
particularly, to a system and method for creating and main-
taining immutability, agreement and availability of data.

2. Description of the Related Art

[0004] Distributed ledger technologies (DLTs), or block-
chains, make possible a growing number of decentralized
alternatives to traditionally centralized financial, govern-
mental, and legal services. Proof of work blockchains made
the development of decentralized services only marginally
practical due to high delay, low throughput, and high and
unpredictable cost of recording and executing transactions.
Newer blockchain proposals address these limitations with
novel consensus mechanisms, faster block distribution tech-
niques, and less speculative transaction pricing [1]-[3].
Fundamentally, however, the performance of blockchains is
limited by their reliance on distributed consensus [4], seem-
ingly central to distributed ledger correctness guarantees.
[0005] Blockchains are a mechanism that guarantees
immutability, agreement, and availability of data. Block-
chains provide immutability by cryptographically linking
blocks in a way that makes their retroactive modification
without renewed distributed agreement near-impossible.
Agreement comes from a blockchain’s distributed consen-
sus protocol, which ensures that the creation of new blocks
follows preset rules. Finally, availability comes from the
replication of blockchain state among distributed nodes that
prevents its deletion and, in the case of public blockchains,
provides censorship resistance.

[0006] In other words, blockchains achieve their correct-
ness guarantees by relying on distributed algorithms that
operate among a number of nodes separated by a network.
When distributed algorithms need to maintain consistent
state, but the network is slow, the result is momentary
interruptions of system availability [5], perceived by users
as degraded throughput. Though blockchain mechanisms
vary, the tradeoff between system consistency and availabil-
ity results in network performance placing a limit on block-
chain throughput.

[0007] The present invention proposes to improve perfor-
mance by revisiting the underlying trust relationships
between a blockchain and its users. Blockchains are con-

Jun. &, 2023

sidered trustless peer-to-peer systems because to use them,
users do not need to trust each other; other widely used
systems are based on strong, but limited, trust relationships.
For example, users generally trust certificate authorities’
assertions of public keys. Similarly, authentication services
based on OAuth 2.0 [6] are generally trusted to issue correct
authentication tokens. Such trust relationships emerge from
a clear self-interest in the correctness of the service by its
provider.

[0008] The present invention demonstrates that limited
trust in third-party services can give rise to a novel system
to create immutability, agreement, and availability through a
mechanism that transfers users’ trust in these third-party
services into trust of blockchain correctness guarantees.
Specifically, the present invention incorporates: (a) the
design and implementation of trusted timestamp, sequencer,
and replication services; and (b) the design and implemen-
tation of a blockchain construction method that transfers the
trust in such services into trust in blockchain correctness
guarantees.

BRIEF SUMMARY OF THE INVENTION

[0009] The present invention is a method for creating and
maintaining immutability, agreement and availability of data
comprising the steps of: building an alternating structure of
blocks and timestamp attestations by: constructing a first
Merkle tree having leaves of transaction data; creating a first
block that contains a root of the first Merkle tree; using a
trusted timestamp service to create a timestamp attestation
over the first block; constructing a second Merkle tree
having leaves of transaction data; creating a second block
that contains a root of the second Merkle tree; linking the
second block to the timestamp attestation of the first block;
using a trusted timestamp service to create a timestamp
attestation over the second block; and repeating the forego-
ing steps over a series of blocks and timestamp attestations
to create the alternating structure in which each block is
linked to the timestamp attestation of an immediately pre-
ceding block; determining an order of blocks by: using a
trusted sequencer service to assign a sequence attestation
over each block and its timestamp attestation, wherein each
sequence attestation has a unique number; and wherein each
block has a height, creating a total order of the blocks based
on the height of each block and the sequence attestation
assigned to each block; determining which of the blocks are
on a main chain by: checking validity of the timestamp
attestation over the first block; checking validity of the
sequence attestation over the first block and of the time-
stamp attestation over the first block; adding the first block
and the timestamp attestation over the first block to the main
chain; wherein the main chain has a last block, wherein the
last block has a sequence attestation, extending the main
chain from the last block by: finding all successor blocks of
the last block, wherein each successor block has a timestamp
attestation and a sequence attestation; identifying a succes-
sor block with a sequence attestation that is lower than the
sequence attestations of all other successor blocks; checking
validity of the timestamp attestation and validity of the
sequence attestation of the successor block identified in step
(©)(iv)(2); and if all blocks with sequence attestations
between the sequence attestation of the last block on the
main chain and the sequence attestation of the successor
block with the lowest sequence attestation can be found,
adding to the main chain the successor block with the lowest

US 2023/0179435 Al

sequence attestation and the timestamp attestation over the
successor block with the lowest sequence attestation; and
repeating the foregoing steps over a set of blocks, timestamp
attestations, and sequence attestations; and using a trusted
replication service to replicate all of the blocks, all of the
timestamp attestations, all of the sequence attestations, and
all of the leaves of the Merkle trees.

[0010] The present invention is also a computer program
product comprising a storage device storing instructions in
a non-transitory manner, which instructions, when executed
by a processing unit of a computing device, cause the
computing device to: create and maintain immutability,
agreement and availability of data using the method
described above. In addition, the present invention is a
computing device comprising a processing unit, memory or
other storage device coupled to the processing unit, the
memory or other storage device storage instructions, which,
when executed by the processing unit, cause the computing
device to: create and maintain immutability, agreement and
availability of data using the method described above.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] FIG. 1 is a table of definitions of notations used
herein.

[0012] FIG. 2 is a diagram of a parent instance of AWS
Nitro Enclaves.

[0013] FIG. 3 is a diagram of a blockchain formed by the

present invention.

[0014] FIG. 4 is a diagram of a fork in a blockchain
formed by the present invention.

[0015] FIG. 5is a flow diagram of the write function of the
present invention.

[0016] FIG. 6 is a flow diagram of the omc function of the
present invention.

[0017] FIG. 7 is a flow diagram of the makeCertificate
function of the present invention.

DETAILED DESCRIPTION OF INVENTION

A. Trusted Services

[0018] The present invention makes a departure from
distributed blockchain implementations to provide its guar-
antees of immutability, agreement, and availability based on
trusted services. This section describes the abstractions and
implementations of trusted timestamp, trusted sequencer,
and trusted replication services within the context of the
present invention.

[0019] 1. Trusted Timestamp

[0020] The function of the trusted Timestamp Service is to
provide accurate and trustworthy physical clock timestamps.
A Timestamp Service 7 maintains a public/private key pair
K//K; and an accurate physical clock. A Timestamp
Service provides the following abstract interface:

#:=timestamp(y)

true/false:=validate(X)

[0021] The timestamp function takes bytes y as input,
reads the physical clock value p, and uses these to create a
timestamp attestation t. The attestation is a tuple t< y,p,g) ,
with signature g={H(y,p)} &, Where H a cryptographic hash
function. The validate function takes a key K and a time-
stamp attestation t as input to determine that y and p are
correctly signed, or that H(t,y,t,p)=Dx(t,g), where D is a

Jun. &, 2023

TR

decryption function. Note that the “,” operator is used for
member selection. When users trust a Timestamp Service
and validate(K"t) returns true, they can trust that the
Timestamp Service J has witnessed bytes t.y at time t.p.
Note that while the timestamp function must execute on the
trusted Timestamp Service, the validate function may be
executed by a user as long as K/ is well-known.

[0022] The present invention implements the Timestamp
Service based on the user authentication service Amazon
Cognito™ (auth service). The auth service accepts user
credentials (username and password) and when valid, pro-
duces a JSON Web Token (JWT). The JWT contains the
username, timestamp, and other fields, signed by the auth
service.

[0023] To produce a JWT such that it is a timestamp
attestation for bytes y, the present invention performs two
steps. First, it creates, on the auth service, a user with:

username=y@bky-sh

and a random password. Second, it uses the username and
password to authenticate with the auth service to produce a
JWT. As the JWT contains; y in the username; the auth
service’s timestamp; and both pieces of data are signed by
the auth service, the resulting JWT is sufficient for a time-
stamp attestation; therefore, a user that trusts Amazon Cog-
nito can trust that bytes y were seen by Amazon Web
Services™ (AWS) at a specific time.

[0024] 2. Trusted Sequencer

[0025] The function of the trusted Sequencer Service is to
provide consecutive numbers to distinct events, A Sequencer
Service S maintains a public/private key pair K;*/K ™ and a
counter. A Sequencer Service provides the following
abstract interface:

s=sequence(y)

true/false:=check(X,s)

[0026] The sequence function takes as input bytes y rep-
resenting a unique event ID, increments the counter by one,
records the counter value as k, and produces a sequence
attestation s y,k,g) , where g={H(y,k)}, . Note that some
symbols, such as k, are reused when their meaning can be
differentiated by member selection. For example, the physi-
cal timestamp t.k can be differentiated from the sequence
number sk because the k’s in question are members of
different types. The check function takes a key K and a
sequence attestation s as input to determine that y and k are
correctly signed, or that H(s,y,s,k)=Dx(s.g). When users
trust a Sequencer Service and check(K ",g) returns true,
they can trust that a unique event represented by s, y was
witnessed by the Sequencer Service S as the s, k™ event.
Similarly to timestamp, the check function may be executed
by a user as long as K" is well-known.

[0027] The Sequencer Service is based on the security and
correctness guarantees provided by the AWS Nitro
Enclaves™ trusted execution environment (TEE). A WS
Nitro Enclaves creates an isolated execution environment
inside an Amazon EC2™ (Elastic Cloud Compute) instance
based on the same Nitro Hypervisor technology that pro-
vides isolation between Amazon EC2 instances themselves.
Inside an Amazon EC2 parent enclave, as shown in FIG. 2,
an enclave runs a container on its own kernel, memory, and
virtual CPU (vCPU) resources sequestered from the parent
instance. An enclave has no persistent storage, interactive
access, or external networking. The only means for the

US 2023/0179435 Al

parent instance to interact with an enclave is through a
VSOCK socket. The parent instance, however, may proxy
external requests for example by running a Hypertext Trans-
fer Protocol(HTTP) server. Finally, applications running
inside the enclave may request attestations from the Nitro
Secure Module (NSM). An attestation includes information
about the enclave environment recorded as hashes of the
continuous measurements of the parent instance ID, the
enclave image file (container), and the application request-
ing the attestation. Optionally, the attestation may also
include the public key of the enclave and up to 1024 B of
user data [7]. NSM packages the attestation as a Concise
Binary Object Representation (CBOR)-encoded, CBOR
Object Signing and Encryption (COSE)-signed object by the

+

AWS Nitro Enclaves Attestation key pair X5 /%3, where

Es

3 1s in a well-known root certificate.

[0028] The implementation of the trusted Sequencer Ser-
vice on an AWS Nitro Enclaves is as follows. Since AWS
Nitro Enclaves produce their own attestations, the

Sequencer Service interface is modified to:

a:=sequence(y)

true/false:=check(k,a)

in which an enclave attestation a includes a sequence
attestation s and the signed hash of the image file running on
the enclave. To provide a trusted Sequencer Service, the
parent instance runs a gateway that proxies calls to the
sequence function running on enclave §. A sequence request
includes bytes y representing a unique event ID and serves
as an idempotency key inside §.

[0029] Upon receiving a sequence request the enclave
increments an in-memory counter and produces a sequence
attestation s<{ y,k,g) as defined above. It is important to note
that repeated requests to sequence the same y will not
increment the counter and produce a new sequence attesta-
tion; instead, the Sequencer Service will serve a cached
{ y.k,g) . The enclave then requests an enclave attestation a
from the NSM, where public key a.K=K/" and user data
a.r=s. Finally, the enclave returns a to the parent instance,
which forwards it to the client.

[0030] Upon receiving the enclave attestation a, a client
can verify it by calling the check function locally. The check
function first verifies that the signature of a against Ama-

zon’s certificate of 5 . Next, check verifies the sequence
attestation against the enclave’s public key by testing that
H(a,r,y,a,r,k)=D, o(a,r,g). If both verifications pass check(

K{ ,a) returns true, at which point the client can trust that
event a.ry was assigned the sequence number a.rk by a
Sequencer Service &.

[0031] Itis important to note that in the Sequencer Service

implementation the enclave generates the key pair 3/
&5 on startup, which is distinct across all enclave instan-
tiations. Consequently, every sequence attestation produced
by an enclave is unique since the enclave uses a distinct
&5 to sign an incremented k. As a result, it is not possible,
even if a Sequencer Service is restarted, to produce two
sequence attestations with the same k for different y signed
by & .

[0032] The last issue is that of user trust. A user may trust
that the AWS Nitro Enclaves system works correctly, but the
Sequencer Service is based on a specific implementation.
The implementation’s code and build tools are publicly

Jun. &, 2023

available and so a user may perform an audit of the code,
build an image, and take the hash of the image H(I). Recall
that the enclave attestation contains a signed hash of the
image running on the enclave H(I'); therefore, when a user
trusts an implementation of the Sequencer Service, they can
verify that a sequence attestation was produced from the
trusted implementation by checking H(I)=H(I"). In other
words, the hash of the image that they built matches the hash
of the image in the enclave attestation.

[0033] 3. Trusted Replication

[0034] The function of the trusted Replication Service is to
provide stable storage to data objects. Since storage nodes
have non-zero mean time between failures (MTBF), storage
stability is probabilistic and comes from replication of data
objects among nodes with mostly independent failures. A
Replication Service provides the following abstract inter-
face:

replicate(y)

y=fetch(H(y))

The replicate function takes as input object bytes y and
replicates them across storage nodes under H(y) as the
retrieval key. The fetch function takes the hash of the object
bytes H(y) as input and returns the object bytes y from one
or more replicas.

[0035] Fundamental models of distributed systems com-
monly assume that nodes have access to stable storage to
imply that protocol data survives node failures. To argue the
correctness of the present invention, the notion of stability
needs to be strengthened and made more specific. In this
context, a stable storage service is defined as providing
durability, immutability, and verifiability. Durability means
that a stored object will remain eventually accessible. Immu-
tability means that a stored object will not change in storage.
Verifiability means that a third-party may verify that a
storage service provides durability and immutability.
[0036] The Replication Service is implemented based on
the correctness guarantees of Write Once, Read Many
(WORM) cloud storage systems. WORM systems enable
their clients to protect stored data against inadvertent modi-
fication, or deletion, to meet regulatory requirements on data
retention[8]. Specifically, the Amazon S3™ (Simple Storage
Service). Microsoft Azure Blob Storage™, and Google
Cloud Storage™ guarantee object immutability through
legal/compliance holds on data objects that prevent anyone,
including the bucket owner, from deleting or modifying
objects [9]-[11]. The durability of storage systems are often
measured as follows. For k>1 and time duration d, k-nines
per d means that the vendor promises to not loose (100-10
-0y percent of a user’s data over duration d. For example,
Amazon, Microsoft and Google provide systems with 11
nines per year of durability by replicating data across
availability zones within a region [7], [12], [13]. Finally,
cloud storage providers allow, with some custom configu-
ration, to make bucket settings publicly readable, which
allows anyone to verify that object holds are enabled.
Alternatively, an AWS Nitro Enclaves with read-only cre-
dentials may inspect bucket settings and emit publicly
verifiable attestations over bucket.

[0037] Although the 11-nines per year durability guaran-
tee is the industry standard, it is not sufficient by itself for
storage of the present invention’s objects. To achieve suf-
ficient durability, the present invention uses the following
storage scheme. First, the system uses random linear net-

US 2023/0179435 Al

work coding [14] to encode each object into 6 shares such
that any 3 shards can decode the object. Second, the shards
are partitioned into six buckets (two buckets per provider)
such that all buckets are in distinct regions. Partitioning
allows for failures to be considered independent. Following
the Backblaze™ method for computing durability [15], the
storage scheme achieves 14-nines of durability over 100
years [16].

[0038] 4. Reliability

[0039] In addition to being trusted, the design of the
present invention also requires the Timestamp Service,
Sequencer Service, and Replication Service to be reliable in
that they can recover from crash failures. While reliability at
the cost of temporary unavailability may be assumed for
Amazon Cognito and cloud storage services, the same
cannot be done for AWS Nitro Enclaves. An enclave may
crash, but because it relies on an internally generated key
pair and in-memory state to provide unique sequence attes-
tations, the enclave may not be restarted. For the remainder
of this document, it is assumed that the Sequencer Service
is reliable, at the cost of no new blocks being possible in the
case of a Sequencer Service failure.

B. Detailed Description of the Invention

[0040] The present invention generates a new blockchain
that provides immutability, agreement, and availability
based on strong, but limited, user trust in the Timestamp,
Sequence, and Replication services. The key innovation of
the present invention is the structure and construction pro-
cess of its chains that transfer user trust in these services into
trust in the present invention’s correctness guarantees.

[0041] FIG. 3 depicts the present invention’s data repre-
sentation. Let m be a Merkle tree. Note that H(m) is
overloaded to mean the root of the tree (not the hash of the
entire tree). A block includes the root of a Merkle tree
created from a set of leaves containing transaction data. For
ablock b, the height of b is the number of blocks on the path
from b to b,. For convenience, a block b at height i can be
referred to as b, and its height denoted as b.i. The block b,
includes the root of the Merkle tree m, as b, m”=H(m,). The
blocks also include a Universally Unique IDentifier (UUID)
[17] field u assigned during block creation.

[0042] The physical timestamp for each block comes from
a timestamp attestation created by the trusted Timestamp
Service. For example, the timestamp attestation t, includes
the hash of the block b, as t,.y=H(b,). To link each timestamp
attestation to the next block, the next block b, includes the
hash of t, as b,, | t7=H(t,).

[0043] The sequence number for each block comes from
its sequence attestation created by the trusted Sequencer
Service. For example, the k” sequence attestation s, (inside
of'a,) includes the unique id of the block b,. To make dealing
with forks easier during the verification process, s, attests
both the block and its timestamp attestations as s,.y=b,.u++
H(t,). Note the “++” operator is used for concatenation.

[0044] It is possible for multiple chains to coexist. The
present invention’s chains can be differentiated by their
block zero b, and b', (made unique by their UUIDs) asso-
ciated with a specific Sequencer Service instances identified
by their unique public keys K" and K" generated during
the startup of S and S', respectively. Just as users can trust
the correctness guarantees of one chain, so can multiple

Jun. &, 2023

chains trust each other’s correctness guarantees; however,
the total order of transactions is maintained within a chain,
but not across chains.

[0045] The structure of the present invention guarantees
immutability, agreement, and availability. Each of these
guarantees is described more fully below, following which
is a discussion of an implementation of the present inven-
tion.

[0046] 1. Immutability

[0047] The present invention guarantees immutability by
the alternating structure of blocks and timestamp attestations
that come together like the teeth of zipper. A timestamp
attestation provides a third-party trusted signature over the
hash of the block, which includes the Merkle root con-
structed from a set of transaction data, also referred to as
transactions. Any change to these transactions would be
detectable as a mismatch between the block hash and the
bytes signed by the timestamp attestation. Thus, as long as
a timestamp attestation remains a part of a chain, its block
remains immutable.

[0048] A timestamp attestation remains in the chain
because the following block includes its hash. Thus, an
attestation at the at end of a chain signs its block and,
transitively, the previous attestation and, indirectly, its block,
and so on.

[0049] A user that considers a block as belonging to an
instance of the described blockchain can be sure of the
block’s integrity by verifying its timestamp attestation. The
user can also check the integrity of the chain by verifying the
preceding blocks and attestations all the way to a well-
known block zero for a particular chain instance.

[0050]

[0051] The present invention guarantees agreement by
detecting and eliminating chain forks so that all users see the
same totally ordered set of blocks and, by extension, trans-
actions. A fork is defined as the existence of two blocks b,
and b'; with the same block height i>0 and the same previous
block b,_;. FIG. 4 illustrates a fork in a chain produced by
the present invention, where blocks b, and b', point to the
same previous timestamp attestation t,_;, and transitively
block b,_;.

[0052] Forks are problematic in blockchains because they
create the possibility of an inconsistency of application state
represented on the blockchain. For example, assume two
users submit transaction data d and d' that are incompatible
with each other. If there is no fork in the chain, any client
reading the blockchain sees the same consistent history in
which, say, d precedes d' in the same block, or across
different blocks. Then, according to the rules of an applica-
tion, the transaction d may be applied to the state and d' may
be ignored. If, on the other hand, d and d' are in the forked
blocks b, and b'; it is not clear how to order d and d' to
determine which transaction to apply and which to ignore.

[0053] Forks also create another problem unique to the
present invention. A user verifying the integrity of an
instance of the described blockchain by walking through it
backwards from a given block, may not know whether the
encountered blocks are on the main chain, or on a fork. This
uncertainty is problematic because transactions in blocks on
a fork will not be considered valid by the users following the
main chain. Additionally, the forked blocks may be mali-
ciously deleted without users on the main chain detecting
that deletion.

2. Agreement

US 2023/0179435 Al

[0054] The present invention detects forks by using block
heights and sequence attestations to create a total order of all
bloc (those on the main chain and on all forks). Given two
tuples { b,t,a) and { b',t',a" of corresponding blocks, time-
stamp, and enclave attestations (containing sequence attes-
tations) such that a.r.y=bu++H(t) and a'.r.y=b'.u++H(t'), an
order relation (—) is defined as follows:

(b, a)—= (b a)eb.i<b'iN/(bi=b'iNa.rk<a'rk).

[0055] For example, the total order of the pairs of blocks
and enclave attestations in FIG. 4 is (b,_;,a,_;)—=(b,,a,)—
(b'a,)—= 0", 1,8,5)—=(b;, 1,85, 5). When there is a fork, the
user determines which block is on the main chain using two
rules. First, a block may be on the main chain only if its
parent is on the main chain. Second, if multiple blocks have
a parent on the main chain, the lowest order block is on the
main chain. For example, following FIG. 4, assume that b,_;
is on the main chain and the fork starts at block height i.
Given, (b,,a,) and (b';,a,,) at the start of the fork, the user
determines which block is on the main chain by observing
that (b,,a,)—=(b';,a,.,), which implies (deterministically) that
b, is on the main chain, while b'; is not. Similarly, given that
b, is on the main chain, users can deterministically decide
that b,,, is on the main chain even though (b';, ,a,,,)—=(b,,
1,a,,5) because b,,;’s predecessor is on the main chain,
while the predecessor of b',, ; is not.

[0056] 3. Availability

[0057] The present invention provides strong, probabilis-
tic guarantees on the availability of data by using a trusted
Replication Service to increase the distribution of blocks,
timestamp attestations, sequencer attestations, and the
leaves of the Merkle trees. Data replication with a trusted
Replication Service creates redundant shards of data distrib-
uted among independently failing replicas. As a conse-
quence, the encoded data remains available to users even if
some of the replicas become unavailable. Even in the case
where a sufficient number of replicas is not momentarily
available, users remain confident that the stored data
remains intact, because of the high durability guarantees of
a trusted Replication Service, and will become available
again. It is important to note that the present invention
records transaction data in a manner that allows users to
verify immutability and agreement over blockchain trans-
actions as long as the guarantees of a trusted Replication
Service remain in place, even if the other trusted services, or
the blockchain creation mechanism, become unavailable.
[0058] 4. Implementation

[0059] The present invention provides the following
abstract interface:

write(d)
Fverify(bo K5 RS H(d)

The write function takes the transaction data d as input and
starts the process of recording d on an instance of the
described blockchain invention. The verify function takes
the chain with genesis block b, the public key of the

Sequence Service ¥ , the public key of the Timestamp

Service Xy , and the hash of a transaction H(d) as input to
return a certificate f, which confirms that the transaction
exists in a finalized block on a chain with genesis block by,
The certificate contains the transaction hash d,, two time-
stamps T and t representing the upper and lower time bounds
tor transaction acceptance, and the chain fields b,. When

Jun. &, 2023

users trust the verify function they know that the transaction
d was written onto a chain between t and t and will remain
unchanged on that chain.

[0060]

[0061] FIG. 5 shows the process implementing the write
function in the present invention. The numbering of the
process description below corresponds to the arrow num-
bering in the figure.

[0062] 1.To sign a transaction d, a user calls write(d). The
Batchlt service receives d and enqueues the write request
internally.

[0063] 2. Periodically, the Ziplt service asks Batchlt for a
batch of write requests. Batchlt dequeues a set of requests
and creates a batch identified by a batch ID c. Batchlt then
creates a Merkle tree m, where each leaf is transaction
data d from a write request in the batch. Batchlt then
replies to Ziplt with the tuple { c,m) .

[0064] 3. Upon receiving a batch from Batchlt, the Ziplt
service creates a block b={ u,m™,t) , where u is a freshly
generated UUID, m,=H(m) is the root of the Merkle tree,
and t7=H(t,_,) is the hash of the preceding timestamp
attestation. The starting point of the blockchain is a
well-known block zero b, and its corresponding time-
stamp attestation t,, and so Ziplt always has a t,_; to
include in a block. Next. Ziplt invokes the timestamp
function of a trusted Timestamp Service by passing it the
hash of the block H(b). The attestation service returns a
timestamp attestation t,= y,p,g} , where y=H(b) and g={H
(v.p)} &, Finally, Ziplt saves t internally as t,_, to include
its hash in the next block.

a. Recording a Transaction

[0065] 4. Ziplt sends the tuple { c,m,b,t) to the Storelt
service.
[0066] 5. Storelt sends the tuple { m,b,t} for replication to

the Replication Service. Storelt does not move onto the
next step until the Replication Service confirms that the
tuple has been successfully replicated.

[0067] 6. Once a block has been replicated it is safe to
assign it a sequence number. Storelt send the unique ID of
the block b.u concatenated with the hash of the timestamp
t attestation H(t) to the Sequencer Service, which replies
with an enclave attestation a containing the sequence
attestation s={ b.u++H(t),k,g) , where g={H(b.u++H(t),k)
Yaeg

[0068] 7. The Storelt service passes the enclave attestation
a to the Replication Service for replication. Upon com-
pleting the replication of the enclave attestation, all trans-
actions in the block are finalized.

[0069] 8. Finally. Storelt sends the batch id ¢ to Batchlt to
notify it that a block corresponding to a batch of requests
has been replicated, which allows Batchlt to delete the
batch. It is important to note that the write function does
not guarantee that a transaction has been recorded on the
blockchain. The write function returns after step 1 noti-
fying the user that the transaction has been accepted for
processing. The user knows that a transaction has been
recorded on the blockchain only after the verify function
returns a certificate. The user can expect that verity will
produce the correct result on a transaction only after the
transaction is finalized.

[0070]

[0071] After calling the write function on a transaction,
the user needs to verify that the transaction was written onto

b. Veritying a Transaction

US 2023/0179435 Al

the blockchain. i.e., that the transaction exists in a finalized
block on the main chain. The verification process proceeds
as follows:

[0072] 1. To verify a transaction, a user calls verify(b,,

i K7 JH(d)) by passing in transaction data d and the
information identifying the blockchain, namely, a block
zero b, along with the and the public key of a Sequencer

Service K¢ and the public key Ky of the Timestamp
Service. As mentioned earlier, the verify function can
execute on the user’s machine; for this reason, the user
does not need to trust the organization running the present
invention to execute the function correctly.

[0073] 2. The verify function downloads the current state
of the blockchain from the Replication Service. Specifi-
cally, this state comprises the set of blocks (B), Merkle
trees (M), timestamp attestations (1), and enclave attes-
tations (A). In practice, these sets and their verification as
described below may be cached (bootstrapped) and
extended as the chain grows.

[0074] 3. Next, the verify function determines which
blocks and timestamp attestations are on the main chain.
To do so, verity calls the function ome, shown in FIG. 6,
which produces a set of alternating main chain blocks and
timestamp attestations Z=omc(b,, &5 K7 ,B,T,A).

[0075] 4. Finally, the verify function determines whether
any main chain block contains the transaction data d. It is
assumed that transactions are idempotent and their hashes
unique; therefore, the certificate of a transaction always
pertains to its first instance. To create a certificate, verify
calls the makeCertificate function, shown in FIG. 7,

which produces a certificate f=makeCertificate(b,,%; ,H

(d),M,Z). If f=a, verify returns the certificate to the user.
[0076] When the verify function returns a certificate f, the
function asserts that the transaction data d existed before the
time f.f and after time f't on the chain with genesis block b,.
When verify returns a certificate it also indicates that the
transaction is final and will not change on the blockchain.
[0077] Let f and ' be certificates over transaction data d
and d', respectively, such that b is the block with hash f.t.b¥
and b' is the block with hash '.1.b". Data d proceeds d' if and
only if b.i<b'.i, or b.i=b'i and d is to the left of d' in the
leaves of the Merkle tree m, such that H(m)=b.m*.
[0078] 5. Advantages Over Prior Art
[0079] Early blockchain designs, such as Bitcoin [18],
were made possible by a Proof-of-Work (PoW) and the
Nakamoto probabilistic consensus. A miner creates a new
block by solving a cryptographic puzzle and guesses a
nonce, the hash of which, together with other parts of the
blockchain, produces a hash that is sufficiently small when
considered as a binary number. While this mechanism has
proven resilient to coordinated attacks, it is costly in terms
of electricity used by mining hardware. To address the cost
of mining of new blocks. Peercoin™ [19] was the first to
adopt Proof-of-Stake (PoS), where the opportunity to create
the next block is decided by a lottery weighted by the
number of coins staked by a verifier node rather than the
node’s hash power. Often, correctness is enforced by a
Byzantine Fault Tolerant (BFT) consensus mechanism. Both
PoW and PoS designs have led to a number of well-
established public blockchains [18], [20].
[0080] The limiting factor to the performance of these
blockchains is the network performance between its miner/
verifier nodes [20]. It simply takes some time to disseminate

Jun. &, 2023

a new block, so that the verifiers can create its successor,
rather than a fork. The block interval then is governed by the
size of the block, block interval, and network performance.
While one might naturally worry about block processing
time, for example, in face of complex smart contracts,
verifier processing speed has not been the limiting factor to
blockchain performance as of yet [2], [4].

[0081] To gain higher performance DLT designs follow
two directions. The first direction, primarily, reduces trans-
action recording delay though decreasing the block interval
by using smaller blocks that take less time to disseminate.
The second direction, primarily, increases transaction
throughput by relying on a constrained number of well-
connected verifier nodes. Some blockchains combine the
two approaches [21], [22].

[0082] In the first direction, when decreasing block inter-
val, blocks can become so small as to contain only a few
transactions. But a block can reference multiple (typically
two) previous blocks, which forms a directed acyclic graph
(DAG)[1],[21]-[23]. In a DAG, blocks at the same height in
the DLT do not necessarily create a fork since bifurcations
can be merged in subsequent blocks. Transaction finality still
depends on agreement among some quorum of nodes, but
nodes reach agreement independently on each transaction.
Independent agreement tends to speed up transaction delay,
but not necessarily throughput.

[0083] In the second direction, when constraining the
number of verifiers, speed of block dissemination improves
though high capacity, direct connections between verifiers.
A DLT may identify these verifiers through delegation [21]
or through a technique called proof-of-authority (PoA) [24],
[25]. In PoA, verifiers stake their reputation to follow the
protocol. Not following the protocol forfeits reputation and
with it, the right to make future blocks. Unfortunately, in
most systems, it is not clear how to quantify reputation.
[0084] The present invention may be characterized as a
“delegated” PoA, insofar as it transfers the reputation of
dependent services, such as Amazon Cognito, Amazon S3,
and AWS Nitro Enclaves into a blockchain mechanism. With
delegation, there are multiple metrics to quantify reputation.
Examples include users, revenue, or number of projects
using the service. With delegated PoA, the key observation
is that, independent of the present invention, dependent
services are already staking their reputation. That is, if a
service such as Amazon Cognito deviates from its protocol,
its reputation will sink resulting in loss of users, revenue,
etc.

[0085] The key feature of a delegated PoA blockchain
resulting from the present invention is that its throughput
depends on the performance of the network among its
component services, as shown in FIG. 5. Since the compo-
nent services may be all placed in the cloud, their connec-
tions can approach line speeds, which is orders of magnitude
faster than the interconnects of more distributed blockchain
architectures. The result is orders of magnitude higher
throughput for the present invention, subject to a constant
transaction finality.

[0086] Although the preferred embodiment of the present
invention has been shown and described, it will be apparent
to those skilled in the art that many changes and modifica-
tions may be made without departing from the invention in
its broader aspects. The appended claims are therefore
intended to cover all such changes and modifications as fall
within the true spirit and scope of the invention.

US 2023/0179435 Al

We claim:
1. A method for creating and maintaining immutability,
agreement and availability of data comprising the steps of:
(a) building an alternating structure of blocks and time-
stamp attestations by:

(1) constructing a first Merkle tree having leaves of
transaction data;

(i1) creating a first block that contains a root of the first
Merkle tree;

(iii) using a trusted timestamp service to create a
timestamp attestation over the first block;

(iv) constructing a second Merkle tree having leaves of
transaction data;

(v) creating a second block that contains a root of the
second Merkle tree;

(vi) linking the second block to the timestamp attesta-
tion of the first block;

(vil) using a trusted timestamp service to create a
timestamp attestation over the second block; and
(vili) repeating steps (a)(i)-(a)(vii) over a series of

blocks and timestamp attestations to create the alter-

nating structure in which each block is linked to the
timestamp attestation of an immediately preceding
block;

(b) determining an order of blocks by:

(1) using a trusted sequencer service to assign a
sequence attestation over each block and its time-
stamp attestation, wherein each sequence attestation
has a unique number, and

(i1) wherein each block has a height creating a total
order of the blocks based on the height of each block
and the sequence attestation assigned to each block;

(c) determining which of the blocks are on a main chain
by:

(1) checking validity of the timestamp attestation over
the first block;

(i1) checking validity of the sequence attestation over
the first block and of the timestamp attestation over
the first block;

(iii) adding the first block and the timestamp attestation
over the first block to the main chain;

(iv) wherein the main chain has a last block, wherein
the last block has a sequence attestation, extending
the main chain from the last block by:

(A) finding all successor blocks of the last block,
wherein each successor block has a timestamp
attestation and a sequence attestation;

(B) identifying a successor block with a sequence
attestation that is lower than the sequence attes-
tations of all other successor blocks;

(C) checking validity of the timestamp attestation
and validity of the sequence attestation of the
successor block identified in step (c)(iv)(2); and

(D) if all blocks with sequence attestations between
the sequence attestation of the last block on the
main chain and the sequence attestation of the
successor block with the lowest sequence attesta-
tion can be found, adding to the main chain the
successor block with the lowest sequence attesta-
tion and the timestamp attestation over the suc-
cessor block with the lowest sequence attestation;
and

Jun. &, 2023

(v) repeating steps (c)(iv)(1)-(c)(iv)(4) over a set of
blocks, timestamp attestations, and sequence attes-
tations; and

(d) using a trusted replication service to replicate all of the

blocks, all of the timestamp attestations, all of the

sequence attestations, and all of the leaves of the

Merkle trees.

2. A computer program product comprising a storage
device storing instructions in a non-transitory manner, which
instructions, when executed by a processing unit of a com-
puting device, cause the computing device to:

create and maintain immutability, agreement and avail-

ability of data, wherein to create and maintain immu-

tability, agreement and availability of data comprises:

(a) building an alternating structure of blocks and time-

stamp attestations by:

(1) constructing a first Merkle tree having leaves of
transaction data;

(ii) creating a first block that contains a root of the first
Merkle tree;

(iii) using a trusted timestamp service to create a
timestamp attestation over the first block;

(iv) constructing a second Merkle tree having leaves of
transaction data;

(v) creating a second block that contains a root of the
second Merkle tree;

(vi) linking the second block to the timestamp attesta-
tion of the first block;

(vil) using a trusted timestamp service to create a
timestamp attestation over the second block; and

(vili) repeating steps (a)(i)-(a)(vii) over a series of
blocks and timestamp attestations to create the alter-
nating structure in which each block is linked to the
timestamp attestation of an immediately preceding
block;

(b) determining an order of blocks by:

(1) using a trusted sequencer service to assign a
sequence attestation over each block and its time-
stamp attestation, wherein each sequence attestation
has a unique number; and

(i1) wherein each block has a height, creating a total
order of the blocks based on the height of each block
and the sequence attestation assigned to each block;

(c) determining which of the blocks are on a main chain

by:

(1) checking validity of the timestamp attestation over
the first block;

(i1) checking validity of the sequence attestation over
the first block and of the timestamp attestation over
the first block;

(iii) adding the first block and the timestamp attestation
over the first block to the main chain;

(iv) wherein the main chain has a last block, wherein
the last block has a sequence attestation, extending
the main chain from the last block by:

(A) finding all successor blocks of the last block,
wherein each successor block has a timestamp
attestation and a sequence attestation;

(B) identifying a successor block with a sequence
attestation that is lower than the sequence attes-
tations of all other successor blocks;

(C) checking validity of the timestamp attestation
and validity of the sequence attestation of the
successor block identified in step (c)(iv)(2); and

US 2023/0179435 Al

(D) if all blocks with sequence attestations between
the sequence attestation of the last block on the
main chain and the sequence attestation of the
successor block with the lowest sequence attesta-
tion can be found, adding to the main chain the
successor block with the lowest sequence attesta-
tion and the timestamp attestation over the suc-
cessor block with the lowest sequence attestation;
and

(v) repeating steps (c)(iv)(1)-(c)(iv)(4) over a set of
blocks, timestamp attestations, and sequence attes-
tations; and

(d) using a trusted replication service to replicate all of the
blocks, all of the timestamp attestations, all of the
sequence attestations, and all of the leaves of the

Merkle trees.

3. A computing device comprising a processing unit,

Jun. &, 2023

(b) determining an order of blocks by:

(1) using a trusted sequencer service to assign a
sequence attestation over each block and its time-
stamp attestation, wherein each sequence attestation
has a unique number; and

(i1) wherein each block has a height, creating a total
order of the blocks based on the height of each block
and the sequence attestation assigned to each block;

(c) determining which of the blocks are on a main chain

(1) checking validity of the timestamp attestation over
the first block;

(i1) checking validity of the sequence attestation over
the first block and of the timestamp attestation over
the first block;

(iii) adding the first block and the timestamp attestation
over the first block to the main chain;

(iv) wherein the main chain has a last block, wherein

memory or other storage device coupled to the processing
unit, the memory or other storage device storage instruc-
tions, which, when executed by the processing unit, cause
the computing device to:

the last block has a sequence attestation, extending

the main chain from the last block by:

(A) finding all successor blocks of the last block,
wherein each successor block has a timestamp

create and maintain immutability, agreement and avail-
ability of data, wherein to create and maintain immu-
tability, agreement and availability of data comprises:
(a) building an alternating structure of blocks and time-
stamp attestations by:
(1) constructing a first Merkle tree having leaves of
transaction data;
(ii) creating a first block that contains a root of the first
Merkle tree;
(iii) using a trusted timestamp service to create a
timestamp attestation over the first block;
(iv) constructing a second Merkle tree having leaves of
transaction data;
(v) creating a second block that contains a root of the
second Merkle tree;
(vi) linking the second block to the timestamp attesta-
tion of the first block;

(vil) using a trusted timestamp service to create a
timestamp attestation over the second block; and
(vili) repeating steps (a)(i)-(a)(vii) over a series of
blocks and timestamp attestations to create the alter-
nating structure in which each block is linked to the
timestamp attestation of an immediately preceding

block;

attestation and a sequence attestation;

(B) identifying a successor block with a sequence
attestation that is lower than the sequence attes-
tations of all other successor blocks;

(C) checking validity of the timestamp attestation
and validity of the sequence attestation of the
successor block identified in step (c)(iv)(2); and

(D) if all blocks with sequence attestations between
the sequence attestation of the last block on the
main chain and the sequence attestation of the
successor block with the lowest sequence attesta-
tion can be found, adding to the main chain the
successor block with the lowest sequence attesta-
tion and the timestamp attestation over the suc-
cessor block with the lowest sequence attestation;
and

(v) repeating steps (¢)(iv)(1)-(c)(iv)(4) over a set of
blocks, timestamp attestations, and sequence attes-
tations; and

(d) using a trusted replication service to replicate all of the
blocks, all of the timestamp attestations, all of the
sequence attestations, and all of the leaves of the

Merkle trees.

