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ABSTRACT
Monitoring and predicting user task performance is critical as it pro-
vides valuable insights for developing personalized human-system
interactions. Key factors that impact task performance include cog-
nitive workload, physiological responses, and affective states. How-
ever, a lack of consideration of any of these factors could lead to
inaccurate task performance prediction because of their interplay.
To address this challenge, we developed a novel hierarchical ma-
chine learning approach that considers these three factors to predict
task performance. We exposed twenty-eight participants to a two-
step experimental study. The first step aimed to induce different
affective states using a validated video database. The second step
required participants to perform validated low and high cognitive
workload-inducing tasks. To evaluate the performance, we com-
pared the models developed using the hierarchical approach that
uses emotional and physiological information, to models that use
only physiological information. We observed that our proposed ap-
proach always outperformed the models that only use physiological
information to predict task performance by achieving a better aver-
age person independent mean absolute error. However, information
gained across various models using the hierarchical approach was
not linear. Additionally, we found that the top predictors for each
model varied, and the model with the highest information gain
included emotional features. These findings suggest the importance
of choosing the appropriate machine learning model and predictors
for building robust models for predicting task performance.

KEYWORDS
Machine learning; Affective Computing; Task performance; Physi-
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1 INTRODUCTION
Humans perform various tasks on a day-to-day basis, and each
task requires a level of cognitive resources. The cognitive resources
required to complete a task vary based on the task complexity and
other factors. The ratio of resources needed to perform a task at
hand to the total resources the human has available to dedicate to
the task is defined as cognitive workload. Cognitive workload is as a
significant factor influencing human performance [4, 24, 33, 40, 56].
Hence, investigating and understanding factors affecting cognitive

workload can provide significant insights to develop personalized
human-machine interactions and collaborations including driving
systems [39], nuclear power plants [25], and flight stations [3] that
enhance the performance. With the rapid growth of technology, the
relevance of cognitive workload and monitoring task performance
has increased significantly across multiple occupational areas. Irre-
spective of the area the consensus is that either high or excessively
low levels of cognitive workload negatively influence operators’
work performance [31, 52].

According to Wickens’ multiple resource theory, humans have
only a limited amount of cognitive resources to dedicate to a task,
and when the task at hand exceeds the available resources it leads
to inefficiency and deteriorated performance [54]. On the other
hand, when a task requires less resources it can distract users from
the primary task leading to a lack of vigilance and result in a subpar
performance [56]. Monitoring cognitive workload becomes particu-
larly important to assess safety-critical systems, where suboptimal
performance could result in errors, potential accidents, and worker
dissatisfaction [52].

However, monitoring cognitive workload is not simple as it is a
multidimensional phenomenon influenced by various factors and
demands a comprehensive understanding. Abbass et al. created
an equation to define cognitive load where the amount of mental
resources needed to perform the task is calculated by adding the
workload related to the work environment (work load) and that im-
posed by exogenous environmental factors (environmental load) [1].
Although this equation considers some personal life experiences, it
does not account for the user’s emotions in the equation. Personal
life experiences, including emotions, significantly impact cognitive
workload and performance as reported in prior studies [2, 19, 50].
Emotions can be defined as functional behaviors influenced by
thoughts, stimuli, and other factors that induce neurophysiological
changes in the human body. Because of this interconnectedness,
emotions can interfere with cognitive resources and can lead to
poor task performance [2, 19].

Emotions, also known as affective states, can be quantified us-
ing a validated model based on valence and arousal [41]. Valence
represents the affective state, which could be positive (pleasant)
or negative (unpleasant) in response to a particular event or sit-
uation. Whereas arousal measures the affective state’s intensity,
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which can vary between highly calm to highly excited or alert.
Although valence and arousal are subjective metrics, they are asso-
ciated with physiological measures that objectively represent users’
emotions [29, 51]. Studies have independently investigated the rela-
tionship between cognitiveworkload and task performance [30] and
the relationship between emotions and cognitive workload [5, 43].
However, to our knowledge, none of the studies have investigated
the interplay between emotions, physiological measures, and cog-
nitive workload for predicting task performance.

We hypothesize that the interplay of these three factors directly
impacts task performance and can provide better insight for pre-
dicting task performance. To evaluate this hypothesis, we propose
a novel two-layer machine learning approach that leverages the
interplay between physiological responses, emotional state, and
cognitive workload to predict user task performance. In the ma-
chine learning model, the first layer uses an emotion assessment
model that predicts the valence and arousal of the user while the sec-
ond layer predicts the task performance taking into consideration
physiological responses along with the predicted level of valence
and arousal from the first layer. The contribution of this research
is twofold: (a) first, we investigate the interplay of physiological
responses, emotional state, and cognitive workload in predicting a
user’s task performance (b) second, we develop a reliable method
and robust model for predicting a user’s task performance which
could significantly impact the use of future technologies, specifi-
cally those which require personalized human-machine interactions
and collaboration such as smart manufacturing.

2 BACKGROUND AND RELATEDWORK
2.1 Association between Emotions and

Cognitive Workload
The literature identifies the connection between emotions and cog-
nitive workload where emotions affect the cognitive processing
efficiency. There are several ways to consider the effects of emo-
tions on cognitive load and the most common approach considers
emotions as a source of extraneous cognitive load [19]. In this ap-
proach, triggered emotions create demands on cognitive resources
that need to be processed. These demands are not relevant to the
task goals and processing these can lead to extraneous cognitive
load. Additionally, both positive or negative emotions can cause ex-
tra task processing and result in increased cognitive load [2, 19, 50].
Further, the relation between emotions and cognitive workload is
linked to intrinsic cognitive load. This assumes emotional regula-
tion as part of the task process and consider emotions as a source
of intrinsic cognitive load [52]. Another way to consider the effect
of emotions on cognitive load is by measuring the effect of emo-
tion on motivation. Studies have observed that positive or negative
emotions can trigger intrinsic motivation and result in an increased
cognitive demand [34].

2.2 Heart Rate and Respiration Rate as
Cognitive Workload and Emotion measures

Cognitive workload and emotions have a significant effect on hu-
man performance, however, quantifying these objectively is diffi-
cult [31, 52]. Various studies have demonstrated that physiological

measures can act as a surrogate of cognitive workload and affec-
tive states [12, 14, 26]. The physiological measures that capture the
change in cognitive workload, and emotions can be represented as
a function of the autonomic nervous system (ANS). The ANS con-
sists of two major systems: the sympathetic and parasympathetic
systems [13, 47]. The sympathetic system is our "fight and flight"
response, which activates during the stress, and exertion states.
In contrast, the parasympathetic system is our "rest and digest"
response, which is dominant during a relaxed state [11, 46]. The
most commonly assessed indices of ANS are based on cardiovascu-
lar and respiration activity [7, 8, 21]. Prior studies have observed
cardiovascular activity and respiration rate are critical indices that
can explain the balance or imbalance in ANS as a result of cogni-
tive workload [6, 17, 22]. Task type, task load, and task difficulty
can be recognized using physiological features by observing dif-
ferences in cognitive state. Researchers have reported a positive
correlation between heart rate (HR) levels, cognitive load, and task
difficulty [6, 17, 22]. Additionally, time domain and frequency do-
main metrics of heart rate variability (HRV) have been investigated
to measure the cognitive workload. Studies have consistently ob-
served a decrease in the time domain measures(i.e., mean HRV,
mean NN) and an increase in the frequency domain metric (i.e.,
LF/HF ratio) while performing tasks that require higher mental
demand. These observations suggest an increase in sympathetic
activity [16, 18, 32, 55]. Similarly, respiration rate (RSP) represents
the rate at which a person breathes per minute and is a crucial
determinant of cognitive workload where RSP increases as the
complexity of tasks increases [20, 23].

Moreover, emotions are associated with a change in neurophysi-
ologic activities, and prior studies have noted a distinct effect on
human physiology. HRV and respiration have been widely used as
indicators of physiological internal states associated with emotion
or affect [27, 28, 36, 44]. In recent years, several studies explored the
feasibility of detecting emotions using HRV features. In the work of
Valenza et al. (2014), linear and nonlinear HRV computed to create
a real-time emotion recognition system able to identify two levels
of arousal and valence (low-medium and medium-high) [51]. Guo
et al. (2016) monitored two emotion states (positive/negative) us-
ing time-domain, frequency-domain, Poincare, and statistical HRV
features [29]. In the work of Cheng et al. (2017) a real-time neg-
ative emotion detection method introduced using linear-derived
features, nonlinear-derived features, time-domain features, and
time-frequency domain features [15].

2.3 Machine Learning Detection of Task
Performance

In recent years advances in machine learning have piqued the
interest of researchers in using algorithms to classify cognitive
workload based on physiological responses [15, 45]. Although there
is much work focusing on predicting the cognitive workload from
physiological signals, only a few studies aim to directly predict a
user’s performance on a specific task. Papakostas et al, considered
physiological data to train machine learning models to predict the
user’s task performance in a sequence learning task. This study uti-
lized data collected from 69 participants during a working memory
task to evaluate the ability of a human to remember and repeat a
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sequence of items (e.g., letters, numbers, actions). The classifier al-
gorithm evaluated using a 10-fold cross-validation, and the authors
achieved an accuracy of 74% [43].

Another recent study aimed to predict the user’s task perfor-
mance using a multimodal approach during a sequence learning
task where the participants had to remember and repeat a sequence
of characters [5]. The authors created a scoring scheme to predict
the success or failure of the task based on three different modalities;
emotions based on facial expressions, emotions based on posture,
and task performance based on physiological data. The authors
achieved an accuracy of 87.5% from the combined modalities us-
ing a neural network. In both studies, authors predicted the task
performance of each trial as a success or fail (binary). Papakostas
et al., considered only physiological measures whereas Babu et
al., considered both physiological measures and emotional state.
However, this study uses emotions based on facial recognition. The
binary outcome of these studies for task performance limits the
application of these models for addressing real-life scenarios as task
performance is usually quantified on a continuous scale [53, 54].
Our research aims to address this gap by building a hierarchical
model-based on user’s emotions and physiological activity to pre-
dict task performance on a continuous scale.

3 METHODS
3.1 Study
In this study, the participants followed a two-step experimental
procedure as seen in the figure 1. The first step aimed to induce
different levels of arousal using validated affective stimuli [35]. In
the next step, the same participants were exposed to two validated
tasks designed to induce low and high cognitive workloads [42].
The order of the steps was counterbalanced to control for order
effects, and upon completing each step and there was a half-hour
break.

Figure 1: Study Protocol

3.2 Participants
Participants for this study included 28 students (13M, 15F, Mean =
22.92 ± 5.09) attending a public university. As a result of the uni-
versity policies associated with COVID-19 restrictions, participants
were recruited by convenient sampling, and participation in the
study was voluntary. All participants included in the study signed
a consent form and were subject to the experiment protocols ap-
proved by university’s Institutional Review Board under IRBNO:
AK030220-EX. There were no dropouts in this study and partic-
ipants were compensated with a $25 Amazon gift card for their
time.

3.3 Cognitive Workload Manipulation
3.3.1 Procedure. The two tasks which aimed to induce cognitive
load were presented on a display with 1680 x 1050 resolution. Par-
ticipants were seated in a rigid but comfortable posture with feet
placed flat on the floor in a quiet roomwith normal light and temper-
ature. Before exposing the participants to the cognitive workload
tasks, physiological measures were collected for fiveminutes during
which the participant remained silent and seated in a comfortable
posture at the testing station. The data collected during this period
represented the baseline metric and no participatory tasks were
administered during this time. Following the baseline, the partic-
ipants performed a practice trial to familiarize themselves with
the nature of the task and eliminate the potential for participatory
errors associated with a lack of confidence with the interface or the
need to learn fundamental tasks extemporaneously. Once the partic-
ipants were comfortable, they were asked to rest for three minutes
to control for the effect of training on physiological data [52].

Figure 2: Cognitive Workload Inducing Tasks

To induce the two levels of cognitive workload, the validated
NASA MATB II application was utilized as seen in figure 2 [42].
The low cognitive workload consisted of a tracking (primary) task
that lasted for 15 minutes. Figure 2 (a) represents the tracking task,
where the participants had to use a joystick to keep a moving tar-
get (circle) in the center of an inner box presented on the desktop
screen (Figure 2 (a)). The root mean square deviation between the
center dot of the circle and the center of the small box represents
the task performance. For the high cognitive workload task, the
participants had to perform the two tasks simultaneously, a primary
task and a secondary task. The primary task was the same track-
ing task, and for the secondary task, we utilized a communication
task, as seen in Figure 2 (b), where participants listened to mes-
sages every 30 seconds (like air traffic control requests) and were
required to adjust the radio to a specific frequency. The order of
the tasks was counterbalanced to control for order effects and upon
completing each task, the participants were given a three-minute
rest period to control the carry-forward effect of one task on the
physiological data. During the experience and the rest period, one
of the researchers continuously monitored the physiological data to
assure that they were collected and transmitted without any issues.
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3.3.2 Dependent Measurements. The response variables consid-
ered include: perceived cognitive workload, heart rate, respiration
rate activity measurements, and task performance accuracy. The
NASA-TLX questionnaire captured the perceived cognitive cogni-
tive workload after each task. The physiological data were collected
using the clinically validated Biopac® MP160 system. The specific
device is portable, non-obtrusive, and allows for modular data ac-
quisition. For collecting the ECG signals, we used 3-lead chest
electrodes, and a respiration belt that went around the chest was
utilized for collecting the respiration signals. The electrocardio-
gram (ECG) and respiration rate (RSP) signals were collected at a
sampling rate of 1000Hz. Task performance was quantified using
an accuracy metric that was obtained by calculating the root mean
square deviation from the target center point in pixel units.

3.4 Emotional Stimuli
3.4.1 Procedure. There are several methods in research to elicit
affective states in the laboratory. A few most common and accepted
stimuli to evoke emotions are pictures [37], films [49], and mu-
sic videos [35]. In this study, we selected twelve videos from the
publicly available dataset: Database for Emotion Analysis using Phys-
iological Signals (DEAP) [35]. The emotional ratings of these videos
were distributed uniformly over the Arousal-Valence plane with
four music videos to correspond to each of the four quadrants of
the 2D emotional model. Participants for this study were the same
set of participants that were exposed to the two cognitive tasks
that aimed to induce a varying workload. Using the same partici-
pant pool was critical as emotions and physiological measures are
subject-dependent. Prior to exposing the participants to the affec-
tive stimuli, initial quantitative measures were collected during a
five-minute period in which the participant remained silent and
seated in a comfortable posture at the testing station. Following the
baseline, the participants were exposed to the emotional stimuli.
The twelve videos were presented in twelve trials. Each trial con-
sisted of a one-minute display of the music video and between each
trial, the participants were given a one-minute rest period to con-
trol the carry-forward effect of one experience on the physiological
data.

3.4.2 Dependent Measurements. The response variables consid-
ered include: valence and arousal perceptions and heart rate and
respiration rate activitymeasurements. The valence and arousal per-
ceptions were captured through the self-assessment manikin (SAM)
questionnaire after completing each trial. SAM is a self-assessment
questionnaire that captures the user’s perception of valence and
arousal associated with stimuli [9]. The SAM contains a series
of images for each dimension (valence, arousal) that range along
a 9-point-scale. Each image defines a point in the scale for each
dimension: valence ranges from 1 -‘unpleasant’ to 9 - ‘pleasant’,
arousal ranges from 1 -‘calm’ to 9 - ‘aroused’.

3.5 Feature Extraction
To extract the ECG signal features, we first detected the Q wave,
R wave, S wave (QRS) complex for each window and then derived
the time series metric of RR interval data [12]. Next, we performed
a power spectrum analysis using wavelet transformation, a time-
frequency analysis method to scale the decomposed ECG signal

into different frequency band signals [14]. To derive the respiration
rate metrics, we used low-pass signal filtering and the detection
of zero-crossings of the filtered signal on the respiration signals.
Further, to obtain the iterative breath interval (IBI), we calculated
the respiration rate variability (RRV) by recording the time stamp
at the peak of each breath pulse and then subtracted the subsequent
peaks to obtain the breath-to-breath (BB) interval [38]. Finally, the
quality, scaling, and correlation properties of the ECG and RSP
signals were assessed to extract the nonlinear-domain features.
In total, we extracted five HRV features in time (mean HR, SD
HR, RMSSD, mean NN) [48] and frequency domain (LF/HF) [48].
Additionally, we extracted five RRV features in time domain (mean
RSP, SD RSP, RMSSD, mean BB, SD BB) ) [38].

3.5.1 Emotional Assessment. For the emotional assessment model
development, each video trial serves as a window for feature ex-
traction. HR and HRV features were extracted from the ECG signal
and RSP and RRV features from the RSP signal for each window.

3.5.2 Task Performance. For the task performance model develop-
ment, we extract physiological data using a window size of 300,000
data points, which corresponds to five minutes, with a sliding win-
dow of size 30,000 points corresponding to 30 seconds.

3.6 Machine Learning Model Development
We chose several machine learning models to have linear and non-
linear ranges and models sensitive to smaller sample sizes. For
all the models we followed the same procedure to select the best
hyperparameters. we defined a grid search with a range of the
hyperparameters and then we created subject folds in order to
identify these parameters based on the leave one subject out cross-
validation technique. The same technique wa used to evaluate our
models. This technique ensures that the best hyperparameters were
selected to train these models with respect to the evaluation tech-
nique. Therefore, all the models were optimized to ensure the best
performing results.

3.6.1 Emotional Assessment. After extracting the features, we
started the machine learning analysis, in which the goal was to
predict the affective state based on the change in physiological
signals during the music videos. For this, we utilized three machine
learning algorithms: support vector regressor (SVR), decision tree
regressor (DTR), and random forest regression (RFR). To evalu-
ate the machine learning models, we trained the model and then
performed leave-one-subject-out (LOSO) cross-validation, where
data from one participant is randomly selected for testing purposes
while the data from other participants are used for training the
model. This process repeated until all the participants were a part
of the test dataset. We calculated the mean absolute error (MAE)
and the root mean square error (RMSE) for each participant.

3.6.2 Task Performance Prediction. Two-layer models: As dis-
cussed in the previous section using only physiological measures for
predicting task performance could lead to poor prediction results
as emotion is a key factor influencing task performance. Hence,
we propose a novel two-layer approach where in the first step, we
use an emotion assessment model for predicting the arousal and
valence level of the user during the cognitive tasks. In the next
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step, the predicted arousal value along with HRV and RRV features
extracted from the physiological data during the cognitive tasks
were combined to serve as a feature set for predicting the user’s task
performance. For predicting the task performance we trained three
machine-learning algorithms: DTR, SVR, and multilayer perceptron
regressor (MLPR). All three algorithms were validated using the
LOSO cross-validation and mean absolute error (MAE) and the root
mean square error (RMSE) were calculated for each participant.

Single-Layer Model: In this approach we predict the task perfor-
mance considering only HR, RR, HRV, and RRV features collected
during the cognitive tasks. The single-layer approach utilizes the
same models as the two-layer and the same evaluation metrics.

3.7 Significant Predictors Calculation
We quantified the HRV predictors of importance using the per-
mutation feature importance structure. This approach is suitable
to identify the relationship between the HRV features, task per-
formance, and emotions by identifying a decrease in the machine
learning score every time a single HRV feature randomly shuf-
fles [10]. Therefore, we are able to understand how each of these
HRV features contributes to the model performance. We applied
the permutation feature importance technique for each machine
learning model created for both single and two-layer approaches.

3.8 Statistical Analysis
Statistical significance was determined through repeated measures
analysis of variance (RM ANOVA) tests on MAE and RMSE. Signifi-
cance is reported at 𝛼 = 0.05. The RM ANOVAs were separately run
on each model performance metric (MAE, RMSE) to test the effects
of the two independent variables, emotions (emotions/no emotions)
and model type (SVR, MLPR, DTR). Separate RM ANOVAs were
run on the HRV and RRV importance to test the effect of the four
independent variables: emotions, algorithm type, sex, and HRV,
RRV feature importance. Post hoc comparisons were performed
where needed using Tukey HSD-Test.

4 RESULTS
4.1 Emotional and Cognitive Workload

Validation
4.1.1 Valence and Arousal Validation. To identify the effective-
ness of the music videos to elicit the desired affective states, we
ran a paired-samples t-test on the ground truth levels of valence
and arousal of the DEAP dataset and the mean reported levels of
our experiment. The valence results from the ground truth DEAP
dataset (mean=5.33, SD=0.87) and our experiment (mean=5.20,
SD=1.10) suggested that the valence levels did not vary signifi-
cantly (t(22)=0.33, p-value = 0.739). Similarly, arousal results from
the ground truth DEAP dataset (mean=4.99, SD=1.67) and our ex-
periment (mean=4.57, SD=0.94) suggested that the arousal levels did
not vary significantly (t(22)=0.76, p-value=0.457). These findings
suggested that the emotions elicited from the DEAP dataset did
not vary significantly from those we generated in the lab. Based on
these findings, we used the participants’ self-assessments as labels
in our dataset.

4.1.2 Cognitive Workload Validation. A paired-samples t-test was
conducted to compare the TLX- Score collected after the low cog-
nitive workload task vs. high cognitive workload task. The results
from the low cognitive workload task (mean=37.9, SD=14.37) and
high cognitive workload task (mean=52.2, SD=14.5) suggested that
the cognitive workload required for completing two tasks varied
significantly (t(27)=-6.68, p-value<0.001). Similarly, participants
reported significantly (p-value < 0.05) higher mental demand, tem-
poral demand, and effort during the high workload task. To validate
the effect of cognitive load on user performance, we compared
the task performance for the low cognitive workload task vs. the
high cognitive workload task. The results from the low cognitive
workload task (mean=33.2, SD=6.5) and high cognitive workload
task (mean=42.9, SD=12.8) suggested that the task performance
for these two tasks varied significantly (t(27)=-5.59, p-value<0.001).
Here, a high score corresponds to lower performance as the task
performance measures the deviation from the actual point in pixels.
Based on these findings we decided to utilize task performance as
the prediction label. To calculate task performance, the Root Mean
Square Deviation from the Center point in pixel units was used as
the label in our dataset.

4.2 Emotional Assessment Models
Performance

Table 1 represents the mean and standard deviation of the MAE
and RMSE for all participants. On analyzing the evaluation metrics,
the SVR outperformed the DTR and RFR at predicting arousal. The
mean MAE and RMSE of the LOSO cross-validation for all the
participants were 1.35 and 3.09 respectively. The DTR performed
better than the RFR and achieved mean MAE and RMSE of 1.42 and
3.2 respectively. Finally, RFR achieved the highest mean MAE and
RMSE of 1.45 and 3.37 respectively. For predicting the valence the
DTR algorithm achieved the lowest mean MAE and RMSE of 1.13
and 2.16. The next best algorithm for predicting valence was SVR
and achieved mean MAE and RMSE of 1.49 and 3.3. Finally, the RFR
achieved mean MAE and RMSE of 1.52 and 3.58 respectively. Based
on these results we chose the SVR model for emotional arousal and
the DTR for emotional valence assessment. Imperatively, the next
step was to connect the first layer (EAM) to the second layer of the
machine learning task performance prediction model.

4.3 Task Performance Prediction
Table 2 represents the results of the two-layer and single-layer mod-
els. For the two-layer approach, the SVR was the best performing
algorithm followed by MLPR and DTR was the worst. In the case of
the single-layer approach, the MLPR algorithm outperformed the
SVR and DTR. For both models, DTR was the worst-performing
algorithm. To identify if adding emotions had a significant impact
on the task prediction performance we compared the single-layer
models to the two-layer approach.

In comparing the task performance prediction results between
single layer model to the two layer approach, no significant dif-
ferences were observed for the main effect of model type (p-
value=0.090, 𝜂2=0.03), and emotions (p-value=0.268, 𝜂2=0.01) on the
dependent variable MAE. Further, we did not observe any interac-
tion effect of model type and emotions (p-value=0.634, 𝜂2=0.01) on
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Table 1: Emotion Assessment Model Results

Model Arousal
MAE RMSE

Valence
MAE RMSE

Decision Tree Regressor 1.42 ± 0.44 3.2 ±1.78 1.13 ± 0.34 2.16 ± 1.35
Random Forest Regressor 1.45 ± 0.41 3.37±1.77 1.52 ± 0.43 3.58 ± 1.99
Support Vector Regressor 1.35 ± 0.43 3.09 ± 1.78 1.49 ± 0.45 3.30 ± 2.02

the dependent variable MAE. However, we observed a significant
difference for the main effect of model type (p-value=0.046, 𝜂2=0.04)
on the dependent variable RMSE. But, no significant main effect dif-
ference was observed in the case of emotions (p-value=0.33,𝜂2=0.01).
Post hoc comparisons using Tukey HSD test indicated that DTR
(mean RMSE=98.8, SE=11.1) varied significantly (p-value=0.04)
from SVR (mean RMSE=72.05, SE=9.18) and from MLPR (mean
RMSE=68.49, SE=7.18, p-value=0.02).However, no significant dif-
ferences (p-value=0.78) were observed between MLPR and SVR.
MLPR had the lowest RMSE suggesting it was the best model fol-
lowed by SVR and DTR. On investigating interaction effects, we
did not observed any interaction effect of model type and emotions
(p-value=0.681, 𝜂2=0.01) on the dependent variable RMSE.

For the two-layer on analyzing the individual performance
achieved using SVR algorithms, two participants had MAE val-
ues beyond three standard deviations, and five participants had
RMSE values beyond three standard deviations. Irrespective of this,
SVR had the lowest MAE and RMSE, suggesting that this algorithm
could predict well in most cases. For both MLPR and DTR, no par-
ticipants had MAE values beyond three standard deviations. Finally,
for DTR, one participant had an RMSE value beyond three standard
deviations. Although there were no outliers, both MLPR and DTR
had a higher MAE and RMSE, suggesting that these algorithms did
not predict as well as SVR.

4.3.1 Comparisons and Differences Across single-layer and two-
layer Models. Although, no significance was observed for inde-
pendent variable emotions and their interaction effects with the
model type we performed a detailed descriptive analysis to under-
stand what impact emotions had on model performance. One of the
preliminary observations was that irrespective of the model, the
predictions were better by adding emotional information as seen
in Table 2. On further investigating the impact of emotions, we
observed that when emotion information were added to the model,
SVR had a lower MAE (n=28, mean MAE=6.07, SE=0.62) and RMSE
(n=28, mean RMSE=60.4, SE=12.3) compared to MLPR MAE (n=28,
mean MAE =6.55, SE = 0.61) and RMSE (n=28, mean RMSE=64.76,
SE=9.89) and DTR MAE (n=28, mean MAE=7.92, SE=0.65) and
RMSE (n=28, mean RMSE=98.5, SE=15.7) suggesting that SVR per-
formed the best when emotion information was added. For the case
where information regarding emotions were not added, MLPR had
a lower MAE (n=28, mean MAE=7.01, SE=0.62) and RMSE (n=28,
mean RMSE=72.2, SE=10.5) compared to SVR MAE (n=28, mean
MAE=7.29, SE=0.60) and RMSE (n=28, mean RMSE=83.7, SE=13.5)
and Model 3 MAE (n=28, mean MAE=7.96, SE=0.66) and RMSE
(n=28, mean RMSE=99.1, SE=16.0) suggesting that SVR performed
the best without the emotion information.

4.3.2 Graph Representation Comparison of the Single and two-layer
Models on Some Representative Participants. Additionally, to com-
pare the ability of the best performing model (SVR) in predicting the
task performance we present a few individual scenarios where the
two models (single-, and two-layer) perform differently. The spe-
cific scenarios represented the variability among individuals that
plays a significant role in the model’s efficacy. Specifically, we rep-
resent four cases: 1) where the two-layer model performed better at
predicting the low cognitive workload state, 2) where the two-layer
model did a better job at predicting the high cognitive workload
state, 3) where the two models behaved similarly at predicting the
task performance, 4) where the two-layer model performed bet-
ter at predicting the task performance. In each graph, the y-axis
represents the task performance in pixel units, and the x-axis is
the prediction window for the high and low cognitive workload
states. The green dotted line shows the actual task performance
of the user. The orange and the blue show the absolute difference
of the predicted performance from the actual performance of the
two-layer and single-layer models respectively.
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(d) Participant 9

Figure 3: Comparing Task Performance Prediction of the
Single Layer and Two Layer model

The Figure 3 (a) shows the performance of the participant 6.
In this case, it can be observed that the two-layer model is very
accurate and performs better than the single layer for all the pre-
diction windows for the low cognitive workload state. In the high
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Table 2: Task Performance Prediction Results

Model Single Layer
MAE RMSE

Two Layer
MAE RMSE

Support Vector Regressor 7.30 ± 3.22 83.67 ± 71.71 6.07 ± 3.28 60.42 ± 65.12
Desicion Tree Regressor 7.96 ± 3.51 99.12 ± 84.74 7.92 ± 3.47 98.47 ± 83.30

Multilayer Perceptron Regressor 7.02 ± 3.31 72.21 ± 55.76 6.55 ± 3.27 64.75 ± 52.30

cognitive workload state, the two-layer model performed better
than the single-layer model for the majority of the prediction win-
dows. Next, we present a case (Figure 3(b)) where the two-layer
performed very well at predicting the task performance in the high
cognitive workload level wherein all windows the two-layer model
was better than the single-layer models and very close to the actual
performance. However, in the low cognitive workload state, the
single-layer outperformed the two-layer model for all the prediction
windows. Participant 7 did not perform well compared to the other
participants. Figure 3(c) demonstrates the performance of the two
models for this particular participant for the two cognitive workload
states.Both models performed almost the same on this participant
with the two-layer model outperforming the single-layer model at
some predicting windows. Finally, Figure 3 (d) shows a case where
the two-layer model performs better than the single-layer models
in both low and high cognitive states for almost all the prediction
windows. In both cases, the absolute difference between the actual
performance and the two-layer prediction performance is smaller
in the low than the high cognitive workload state. For only two
windows the single-layer models perform better than the two-layer
model in the high cognitive workload state.

4.4 Significant Predictors
Irrespective of emotions added or not, we observed that all model
types had SD RSP among their top five important features. Although
there we no other overlapping features between the three model
types, for the two best performing models (i.e., SVR, MLPR), we
observed RRV SDBB to be an overlapping feature and was the first
and second important feature. Similarly, across MLPR and DTR,
we observed two overlapping features: HR mean and RSP mean, of
which HR mean was ranked higher in both models. However, more
interestingly, we observed that for SVR, Valence and Arousal (fea-
tures associated with emotions), were among the top five features,
which further explains why SVR was the best performing model
when emotion details were added as opposed to MLPR which was
the best performing model without emotion details. Additionally,
for SVR, among the top five features, three are respiration signal
features, and two are emotional features with no heart rate signal
features. While for MLPR and DTR, we observed only heart rate
signal features and respiration signals among the top five features.

5 DISCUSSION
In this paper, we developed three machine learning regression mod-
els for predicting the user’s task performance during cognitive tasks.
We developed an emotional assessment model that can capture the
emotional state of the user while performing the tasks and we added

this information to another model along with physiological data to
predict the users’ task performance.

The key takeaways of the study include:
(1) Model performance improves after adding emotional infor-

mation irrespective of the model type.
(2) Information gained from the emotional assessment output

is not linear.
(3) Model type and significant predictors are important to build

robust models.

5.1 Model Performance Improves After Adding
Emotion Information Irrespective of Model
Type

Previous research has reported that cognitive workload influences
emotions and physiological responses [19, 50, 52]. However, these
relationships were explored independently. This study which de-
veloped a novel two-layer approach that captures the interplay
of emotions and the physiological state of the user observed that
irrespective of learning algorithms two-layer approach leads to
more accurate task performance predictions compared to the inde-
pendent single-layer approach. These findings suggest that when
trying to predict task performance the independent variables (i.e.,
emotions, physiological responses, cognitive workload) should be
considered simultaneously rather than independently.

5.2 Information Gain from the Emotional
Assessment Output is Not Linear

The information gained by adding the emotions to the two-layer
approach was evident where all two-layer models outperformed
their respective single-layer models in predicting task performance.
However, it should be noted that the information gained by each
model is non-linear; wherein the initial single-layer approach, the
best performing model was the MLPR, but in the two-layer method,
the SVM outperformed MLPR. Additionally, we notice that decision
trees did not gain much information from emotion. However, the
two algorithms made significant improvements which clearly sug-
gests that each algorithm uses the information in a different manner
to make predictions. SVR works by fitting the best line within a
specific set threshold value which represents the distance between
the hyperplane and boundary line. By adding valence and arousal
points the SVR was able to fit a better line in the hyperplane to bet-
ter predict the task performance. We will add this talking point to
our discussion section. This finding suggests that information gain
was higher in SVM than MLPR by adding the emotional assessment
model, which begs the question of how to choose suitable learning
algorithms to develop robust machine learning predictors.
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5.3 Model Type and Significant Predictors are
Important to Build Robust Models

The statistical analysis showed that among the top five predictors
for each model there was only one common feature (SD RSP). Ad-
ditionally, the emotional-related features (i.e., valence and arousal)
are among the top predictors only in the case of SVR. These re-
sults indicate that the choice of algorithm type and features is very
important to developing models that can capture the underlying
relationship between cognitive workload and emotional state to
predict task performance. In the case of SVR, the underlying rule
is to find the hyperplane that has the maximum number of points
meaning that the algorithm relies a lot on the geometrical proper-
ties of the data. Our results indicate that adding valence and arousal
contributed to creating a better boundary thereby improving task
prediction.

5.4 Participant variability
There were a few participants whose physiological data were signif-
icantly different compared to the group and affected the predictions
made by the machine learning models. Although a higher accuracy
in prediction could have been achieved by excluding the outlier
cases, we decided to include them to replicate a practical scenario
where the physiological measures of participants could vary signifi-
cantly based on various factors. Additionally, including the variable
data helped in building robust machine learning models that can
be used for future predictions. Although being an in-lab study, we
observed variability among participants and this suggests that a
higher variability can be expected in a real-world setting. Future
studies should consider including these outliers in model training
rather than focusing on performance metrics to develop a robust
and reproducible model.

5.5 Study Limitations
One of the limitations of this study is the use of the SAM ques-
tionnaire to report valence and arousal which can result in partial
understanding and reporting valence and arousal perceptions. In
this study, we observed a few cases where the two-layer approach
performed better at predicting the task performance in the high
state and in some cases the low state for the same participant. This
is primarily because, in the emotional assessment dataset, there
appears to be an under-representation of music videos that induce
extreme valence (negative, positive) and high arousal (negative,
positive). Therefore the emotional assessment model fails to cap-
ture the emotions that represent these extreme arousal and valence
values which could improve the information gained to predict the
user’s task performance. Future work should consider the accuracy
of survey responses as the ground truth for someone’s emotional
state and a representative selection of stimuli that can induce va-
lence and arousal in the whole range. Another limitation is that the
participants recruited in this study were college students predom-
inately seeking advanced degrees in engineering. In future work,
efforts should be made to ensure a diverse sample of older and
younger in the planned participant pool.

6 CONCLUSION AND FUTUREWORK
In this research, we investigated the interplay of emotions and
cognitive workload on performance and we proposed a method for
predicting users’ task performance during a cognitive task. This
method considers the user’s emotional state during these tasks to
enhance the information gained. We evaluated this method on 28
participants, and the user-independent modeling approach showed
that this method provides better prediction results than using only
physiological data. The most important aspect of this research
was to investigate methods for building robust and adjustable user
models that can adapt to the emotional state of each individual
during a cognitive task to predict task performance.

In recent years, robots have become key elements in achieving
manufacturing competitiveness. Especially in industrial environ-
ments, such as assembly lines, a strong level of interaction and
cooperation is required where humans and robots form a dynamic
system that works together towards achieving a common goal or
accomplishing a task. However, to ensure the efficiency and produc-
tivity of the overall human-robot cooperation, we need to create
a collaborative environment where we, the human operators, feel
comfortable working with robots and vice versa. A promising way
to achieve this is tuning the interaction with the robot depending
on the operator’s cognitive and emotional state. The models de-
veloped in this research will be adopted for the next stage of our
research, where an operator performing a collaborative task with
a robot will be intervened (velocity adjustments) to achieve the
optimal performance in real-time.
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