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Abstract—1In recent years, robots have become vital to
achieving manufacturing competitiveness. Especially in indus-
trial environments, a strong level of interaction is reached
when humans and robots form a dynamic system that works
together toward achieving a common goal or accomplishing
a task. However, the human-robot collaboration can be cog-
nitively demanding, potentially contributing to cognitive fa-
tigue. Therefore, the consideration of cognitive fatigue becomes
particularly important to ensure the efficiency and safety in
the overall human-robot collaboration. Additionally, sex is
an inevitable human factor that needs further investigation
for machine learning model development given the perceptual
and physiological differences between the sexes in responding
to fatigue. As such, this study explored sex differences and
labeling strategies in the development of machine learning
models for cognitive fatigue detection. Sixteen participants,
balanced by sex, recruited to perform a surface finishing task
with a UR10 collaborative robot under fatigued and non-
fatigued states. Fatigue perception and heart rate activity
data collected throughout to create a dataset for cognitive
fatigue detection. Equitable machine learning models developed
based on perception (survey responses) and condition (fatigue
manipulation). The labeling approach had a significant impact
on the accuracy and Fl-score, where perception-based labels
lead to lower accuracy and F1-score for females likely due to sex
differences in reporting of fatigue. Additionally, we observed a
relationship between heart rate, algorithm type, and labeling
approach, where heart rate was the most significant predictor
for the two labeling approaches and for all the algorithms
utilized. Understanding the implications of label type, algorithm
type, and sex on the design of fatigue detection algorithms is
essential to designing equitable fatigue-adaptive human-robot
collaborations across the sexes.

ECG, human factors, human-robot collaboration, machine
learning, sex differences, robot adaptation

I. INTRODUCTION

The emergence of Industry 5.0 places the emphasis on
designing robotics that can augment and support human
capabilities in manufacturing processes [1], [2]. The combi-
nation of the precision and speed of industrial collaborative
robots with the creativity and ingenuity of humans can
lead to more efficient and safer manufacturing processes,
that are otherwise uneconomical or difficult to automate [1]
However, the new types of interactions between humans
and robots can lead to more complex tasks for operators,
shifts in workload, and the emergence of additional human
factor considerations, such as trust, situation awareness, and
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team fluency [3]. Consideration of the resulting impact this
human-robot collaboration (HRC) has on the human worker
is essential to improve the overall manufacturing systems
performance, improve the trustworthiness of HRC designs,
and result in a better experience for the operator, where
robotics are designed with intelligent support.

A pertinent consideration in such HRC designs is the
emergent loading on the operator in the collaborative tasks.
Traditionally, a robot’s comparative strength provides repet-
itive support and precision to uniform sub-processes [4].
Allocation of the uniform and nominal events to the robot
can result in increased complexity of the operator’s tasks.
Additionally, the interaction itself with a complex system can
similarly increase the load of the operator [5]. Sustaining
higher levels of cognitive load can directly lead to faster
onsets of cognitive fatigue. Previous research has shown that
fatigue is directly associated with increased human error,
motivation impairments, and tendency towards complacent
and unsafe behaviors [6]-[9]. While the onset of fatigue
is undesirable, underloading operators can lead to similar
impairments [10]. In some cases, improper design of automa-
tion can remove task complexity and underload operators
resulting in attention decrements, lower worker satisfaction,
and unsafe work conditions [11]. Ensuring appropriate levels
of cognitive load is an essential consideration of HRC
designs. Regardless of loading levels, the onset of operator’s
fatigue is an inevitable consideration in HRC designs.

A. Heart Rate Variability as a Fatigue Measure

Providing collaborative robots with the means to perceive
their operator’s cognitive state surrounding fatigue enables
them to make informed decisions to support their operator.
This knowledge can be provided to the robot through non-
invasive measures sensitive to cognitive fatigue state, such
as human physiology. Over the past decades, studies have
observed that the autonomic nervous system (ANS) is a
physiological indicator of cognitive fatigue [12]-[14]. The
ANS consists of two major subsystems: the sympathetic and
parasympathetic systems [15]. The sympathetic system is our
“fight and flight” response, which activates during the stress,
and exertion states. In contrast, the parasympathetic system
is our “rest and digest” response, which is dominant during
a relaxed state [16]. The most commonly assessed indices
of ANS are based on cardiovascular activity [17]. Heart
rate variability (HRV) is based on the variations between
heartbeats and it has been proven to be a reliable indicator
of the ANS’s activity [17].

The use of non-invasive covert physiological monitoring



is the first step toward fatigue-adaptive robotics that mitigate
the negative effects associated with operator fatigue and al-
low for fatigue recovery. Machine learning algorithms (ML)
can be leveraged to detect cognitive fatigue in real-time.
Additionally, research studying fatigue ML can provide novel
advancements into understanding physiological differences
between operators as well as contextual insights throughout
the task.

A frequent consideration for variability between operators
is their sex. According to the United States census, 30%
of the manufacturing workers have consistently been fe-
male [18], yet are frequently not considered in research [19].
Historically, males and females have shown to have different
fatigue reporting perceptions [3], [20], as well as different
HRYV responses to fatigue manipulation [3]. While the con-
sideration of operator sex in fatigue detection ML is essential,
operator sex is woefully overlooked in current detection
strategies. It is thus unknown how operator sex impacts
performance of various fatigue detection model-types, the
trade-offs of using fatigue perceptions or condition as model
labels, or the physiological predictors that will best detect
fatigue in each sex. Moreover, understanding the fundamental
sex-differences in perceptual and physiological response can
help reveal which types of ML models (e.g., SVM, kNN)
will be most successful at explaining the difference between
fatigue and no fatigue for each sex as well as inform which
labeling strategy provides the best model performance for
each sex. It is possible that the underlying sex-differences
in perceptual and physiological indicators of fatigue lead
to different geometrical properties of HRV data. Thus, this
study focuses on sex-parity in the development of fatigue
model detections.

B. Machine Learning Detection of Fatigue

While consideration of operator sex is overlooked, pre-
vious work has shown the viability of using HRV data
with k nearest neighbors (kNN) [21], artificial neural net-
works (ANN) [22], and random forests (RF) [23] to detect
cognitive fatigue. ANNs have been proven to be effective at
detecting cognitive fatigue with an accuracy of 91.3% [22].
Additionally, using physiological features extracted from
a wrist wearable device has been shown effective at de-
tecting cognitive fatigue [21]. The results of a previous
study indicate that a subject independent kNN achieved
75.5% accuracy. Furthermore, based on a recent study RF
achieved 57.8% accuracy using three-fold cross-validation
and accuracy of 63.9% using principal components analysis
and leave-one-out cross-validation [23]. While the previous
work indicates the feasibility of detecting fatigue through
heart rate features, there is a lack of consideration for the
underlying sex-differences in fatigue detection [20], where
controlling for sex in sample sizes alone may not be suf-
ficient for equitable ML given the fundamental differences
in reporting and responding to fatigue between the sexes,
which implicates which model types and labels best classify
fatigue.

Perceptual and physiological differences between the sexes

have implications for the labeling of machine learning
models. There are two main methods of labeling cognitive
fatigue: by perception (survey responses) or by manipula-
tion (fatigue/no fatigued condition). The majority of studies
exclusively focus on developing machine learning models
based on fatigue manipulation [21], [23]. However, it is
important to investigate the cost of using perception and
condition as ground truth labels given known sex-differences
in perceptual and physiological responses so that designs of
fatigue detection models are fair between the sexes.

As such, this investigation explores considerations for sex-
equitable outcomes in machine learning that detects cognitive
fatigue, including understanding the role of sex, labeling
approach, and type of ML algorithm. To provide a dataset
specific to fatigue in HRC, a human-subjects study was
conducted, where manipulation of operator fatigue state as
well as a balancing of operator sexes was performed in a
popular HRC use case namely, surface finishing. Our primary
objectives include:

1) Determine model accuracy and F1 score trade-offs, if
any, for labeling models based on perception (survey
responses) vs. condition (manipulation) and the inter-
action with operator sex.

2) Determine model accuracy and F1 score trade-offs, if
any, across operator sex (male vs. female) as the main
effect.

3) Discuss differences in significant predictors across
variables (label type, operator sex, algorithm type).

II. METHODS

A. Procedure

Sixteen participants, balanced by sex, were recruited from
the university engineering community to perform repetitions
of a metal polishing task in collaboration with a UR10
robot (Universal Robots; Denmark). All participants were
healthy, right-handed, and had an age distribution of 25.12
4+ 3.31 years. This study was approved by the local In-
stitutional Review Board and adhered to COVID-19 safety
protocols. Participants were compensated with $70 to at-
tend two sessions, split by the fatigue variable (summing
to approximately 7 hours). At each session, as illustrated
in Figure [1} participants underwent 40 approximately one-
minute trials, in which they used right-handed joystick inputs
to navigate the robot’s end-effector along a precise S-shaped
trajectory. A full repeated measures design was used, where
all participants underwent two levels of fatigue, explained
below, and two levels of robot assistance [3], to create a
dataset used to train cognitive fatigue detection models. This
dataset led to a large volume of data per participant and
deemed as sufficient to test sex differences given observed
differences between men and women in fatigue perceptions
with effect sizes greater than 0.2 and sex differences in HRV
responses had significant differences with effect sizes greater
than 0.3 [3].



Fig. 1: Surface Polishing Task. Joystick controls are con-
verted to robot joint velocities to navigate an S-shaped
trajectory to polish a metal surface.

B. Cognitive Fatigue Manipulation

Participants attended two sessions split by the fatigue vari-
able: no-fatigue vs. fatigue. At the fatigue session, cognitive
fatigue was manipulated prior to the participant’s interaction
with the UR10 robot using a 1-hour computer-based n-
back task [3], prior to which participants were familiarized
with the task and given a minimum of five minutes to
practice. Participants completed a spatial 2-back test which
required memorization of the last two locations of stimuli
within a 3X3 and pressing the space bar when the current
stimulus matched the location of one two-back grid [24].
The spatial n-back test loads spatial working memory and
cognition needed to perform a spatial metal polishing task,
and the sustained n-back manipulates cognitive fatigue [25],
observable in HRV features [26]. Manipulation of fatigue
was successfully shown, on average, to increase fatigue
perceptions from (2.75 £ 1.73) in the no fatigue trials to
(4.73 +£2.47) in the fatigue trials, and to reduce n-back task
performance and physiological response. Results from this
manipulation are thoroughly discussed elsewhere [26].

C. Dependent Measurements

Two response variables are presented here: fatigue per-
ceptions and heart rate activity measurements. Fatigue per-
ceptions were captured through one question asked after
each trial ‘What is your level of fatigue?’, rated on an
interlocked Likert scale (1-very low fatigue, 9-very high
fatigue). This measure was selected based on prior n-back
work utilizing this metric to monitor fatigue [26]. Heart rate
activity measurements were collected using a chest affixed
2-lead electrocardiogram device (Actiheart 5, Camntech,
UK). The electrocardiogram (ECG) signal was collected at

a sampling rate of 1024Hz. Any ectopic beats or motion
artifacts were interpolated [27] and HR and HRV features
from the ECG signal for each trial. This study utilized
time-, frequency-, and nonlinear-domain metrics of heart rate
variability. Previous research indicates that these metrics can
be extracted for the trial windows [28] To extract the ECG
signal features, the Q wave, R wave, S wave complex was
detected for each trial window and then the time series metric
of RR interval data was derived.Next, a power spectrum
analysis was applied using wavelet transformation, a time-
frequency analysis method to scale the decomposed ECG
signal into different frequency band signals [29]. Finally,
the quality, scaling, and correlation properties of the ECG
signal were assessed to extract the nonlinear-domain features.
In total, we extracted thirty HRV features in time (mean
HR, SD HR, min HR, max HR, mean NN, median NN,
RMSSD, SDNN, CVNN, CVSD, NN20, NN50, PNN20,
PNNS50, range NN, SDSD) [30], frequency (HF, LF, LFnu,
HFnu, ratio LF/HF, VLF) [30], and non-linear domain (CSI,
modified CSI, CVI, SampEn SD1, SD2, ratio SD2/SD1) [30].

D. Cognitive Fatigue Detection

The next step was to start a machine learning analysis,
in which the goal was to detect cognitive fatigue following
two different labeling strategies — based on the condition and
based on the fatigue perception.

1) Fatigue Based on The Condition: In this case, the
machine learning models were trained using the features
extracted from the physiological data and the labels were
assigned based on the scientific consensus of the 2-back
test [24]. A no-fatigue label was assigned at each trial in
the no fatigue session and a fatigue label was assigned at
each trial on the fatigue session.

2) Fatigue Based on Perception: These models were
trained using the features extracted from the physiological
data and the labels were assigned based on the self-reported
fatigue after each trial [21]. The participants’ ratings were
thresholded into two classes (fatigue and no-fatigued) on the
9-point rating scales, where the threshold was placed in the
middle at 5.

E. Cognitive Fatigue Evaluation

In order to predict the cognitive fatigue, we utilized five
machine learning algorithms selected to have linear and
non-linear range and models sensitive to smaller sample
sizes [31]: a support vector machine (SVM), a kNN (K=5), a
logistic regression (LR) classifier, an AdaBoost (AB), and an
Random Forest (RF). To determine the best hyperparameters
for the classifiers, we applied the grid search method for each
combination of the parameters of the models.

To evaluate the classifiers, we trained the models and then
performed leave-one-subject-out (LOSO) cross-validation,
where data from one participant was randomly selected
for testing purposes while data from the other participants
were used for training the model. This process was repeated
until all the participants were used as the test dataset. We
calculated the mean and standard deviation accuracy and the



Fl-score for all the participants for each of the labeling
approaches we followed. Furthermore, we calculated the
overall accuracy and Fl-score of the two sexes, where we
simply averaged the accuracy and Fl-score of the male
and female participants to capture the differences when
interacting with robots. We also, report the range of accuracy
and F1-score of males and females for each ML algorithm.

F. Significant Predictors Calculation

We quantified the HRV predictors of importance using
the permutation feature importance structure. This approach
is suitable to identify the relationship between the HRV
features and the cognitive fatigue outcome by identifying
a decrease in the machine learning score every time a
single HRV feature randomly shuffles [32]. We applied the
permutation feature importance technique for each machine
learning model we created under each labeling approach for
all participants.

G. Statistical Analysis

Statistical significance was determined through repeated
measures analysis of variance (RM ANOVA) tests on ac-
curacy and Fl-score. Significance is reported at o = 0.05.
The RM ANOVAs were separately run on each model
performance metric (Accuracy, Fl-score) to test the effects
of the three independent variables, label type (condition-
based/perception based), machine learning algorithm type
(AB, SVM, kNN, LR, RF), and sex (male/female). Separate
RM ANOVAs were run on the HRV importance to test
the effect of the four independent variables: label type,
algorithm type, sex, and HRV feature importance. Post hoc
comparisons were performed where needed using Tukey-
Test.

ITI. RESULTS
A. Fatigue Condition Models

1) Accuracy Metric: Table [I| on the next page represents
the mean and standard deviation of accuracy for all partici-
pants, males, and females. The accuracy of models evaluated
on males and evaluated on females were statistically identical
(p=0.915; Figure[2). Using LR the accuracy for males ranged
from 7% to 97% and from 32% to 100% for females. Using
SVM the accuracy ranged from 22% to 96% for males and
from 0% to 100% for females. In the case of RF the accuracy
was between 0% and 100% for males and 42% to 95% for
females. Using kNN the accuracy ranged from 38% to 78%
for males and from 57% to 76% for females. kNN achieved
a lower 37% and a higher 99% accuracy for two female
participants. Finally, the accuracy of AB was between 0%
and 100% for males and between 38% and 81% for females.

2) Fl-score Metric: Table |lj on the next page represents
the mean and standard deviation of F1-score for all partic-
ipants, males, and females. The Fl-score of models evalu-
ated on males and evaluated on females were statistically
identical (p=0.996; Figure [3). Using LR the Fl-score for
males ranged from 5% to 99% and from 53% to 100%
for females. LR achieved a lower accuracy of 21% for one
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Fig. 2: Accuracy Distribution of Models Evaluated on Males
and Females for Condition-Based Models

female participants. Using SVM the Fl-score ranged from
40% to 97% for males and from 49% to 98% for females. In
the case of RF, the Fl-score was between 5% and 100% for
males and 31% to 95% for females. Using kNN the accuracy
ranged from 53% to 65% for males and from 45% to 84% for
females. KNN achieved a lower F1-score of 40% and a higher
of 80% for two male participants. Also, the model achieved
a higher F1-score of 98% for one female participant. Finally,
the Fl-score of AB was between 5% and 100% for males
and between 7% and 87% for females.
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Fig. 3: Fl-score Distribution of Models Evaluated on Males
and Females for Condition-Based Models

B. Fatigue-Perception Models

1) Accuracy Metric: Table [lI| on the next page represents
the mean and standard deviation of accuracy for all par-
ticipants, males, and females. Models evaluated on males
had higher accuracy than evaluated on females (p<0.01;
Figure ). Using LR the accuracy ranged from 33% to 99%
for males and from 12% to 70% for females. Using SVM
the accuracy ranged from 52% to 100% for males and from
17% to 76% for females. In the case of RF, the accuracy
was between 58% and 100% for males and 24% to 63% for
females. Using kNN the accuracy ranged from 33% to 100%
for males and from 31% and 63% for females. Finally, the
accuracy AB was between 38% and 100% for males and
between 30% and 64% for females.

2) Fl-score Metric: Table [lIl on the next page represents
the mean and standard deviation of Fl-score for all partic-
ipants, males, and females for the condition-based machine
learning models. Models evaluated on males had higher
accuracy than evaluated on females (p<0.01; Figure [5).
Using LR the Fl-score ranged from 70% to 99% for males.
The model achieved a lower Fl-score of 24% for one male
participant. The Fl-score ranged from 21% to 79% for
females. Using SVM Fl-score ranged from 70% to 100%
for males. The model achieved an extremely low Fl1-score



TABLE I: Mean LOSO CV accuracy (£std) and Fl-score (£std) for All participants, Males, and Females for the condition-

based Models

Model ALL Male Female
Accuracy F1-score Accuracy F1-score Accuracy F1-score
AB 61.82+24.10 | 54.10£31.76 | 61.79+32.17 | 56.03+£36.03 | 61.85+14.05 | 52.17+29.23
SVM 70.93£21.61 | 74.28+17.36 | 69.20+24.4 | 74.54+18.32 | 71.81+21.12 | 73.30+17.66
kNN (k=5) | 60.42+15.71 | 63.67+13.48 | 59.20+11.98 | 60.90+11.68 | 61.65+19.12 | 66.36+15.35
LR 66.46+25.80 | 65.27+26.13 | 64.28+30.63 | 64.83+30.39 | 68.64+21.86 | 66.24+23.20
RF 64.74£24.777 | 64.23+25.66 | 62.85+31.23 | 64.63+30.57 | 69.28+15.26 | 67.41+18.93

\B = AdaBoost, SVM = Support Vector Machine, RBF = Radial Basis Function, kNN = k Nearest Neighbor,

LR = Logistic Regression, RF = Random Forest

TABLE II: Mean LOSO CV Accuracy (+£std) and Fl-score (£std) for All participants, Males, and Females for the Fatigue

perception-based Models

Model ALL Male Female
Accuracy F1-score Accuracy F1-score Accuracy F1-score
AB 64.94+£22.29 | 64.21+£32.14 | 74.66x£24.15 | 77.37+£29.85 | 50.31+11.76 | 51.68+12.69
SVM 64.69+25.76 | 66.65+31.76 | 79.22+21.33 | 78.30+21.80 | 50.16+22.02 | 55.00+26.57
kNN (k=5) | 64.94+25.99 | 69.38+27.31 | 81.08+23.04 | 83.93+25.36 | 51.80+11.53 | 50.19+13.31
LR 61.58+27.08 | 69.92+25.94 | 76.55+23.48 | 81.57+24.8 | 46.61+22.53 | 58.28+23.30
RF 65.60+21.61 65.15£21.94 | 79.40+20.79 | 78.05+21.67 51.13£12.2 51.12+13.44

\B = AdaBoost, SVM = Support Vector Machine, RBF = Radial Basis Function, kNN =k Nearest Neighbor,

LR = Logistic Regression, RF = Random Forest
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Fig. 4: Fl-score Distribution of Models Evaluated on Males
and Females for Condition-Based Models

of 0% for one male participant. The F1-score was from 7%
to 78% for females. In the case of RF, the Fl-score was
between 50% and 100% for males and 35% to 70% for
females. Using kNN the accuracy ranged from 75% to 100%
for males. The model achieved a lower F1-score of 23% for
one male participant. The F1-score ranged from 36% to 70%
for females. Finally, the Fl-score of AB was between 64%
and 100% for males. The model achieved an extreme low
Fl-score of 8% for one male participant. The Fl-score was
between 31% and 78% for females.
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Fig. 5: Fl-score Distribution of Models Evaluated on Males
and Females for Condition-Based Models

C. Comparison and Differences Across Sexes

1) Accuracy Metric: A statistically significant main effect
of sex on accuracy was observed (p<0.01, 7?=0.08) with
greater accuracy for models evaluated on male participants
(70.32% =+ 24.14%) than female (58.32% =+ 17.28%), re-
gardless of label. There was also a significant interaction
effect of sex and label type (p<0.01, n°=0.08)). The post-
hoc analysis reviewed; in perception-based models, mod-
els evaluated on males had higher accuracy (78.18% =+
22.75%) than females (50% =+ 16.28; p<0.01). Furthermore,
models evaluated on males achieved higher accuracy using
perception-based labels compared to condition-based labels
(p=0.01). Condition-based labels led to higher accuracy for
females (66.65% =+ 18.28) compared to perception-based
labels (50% =+ 16.28; p<0.01). Finally, male condition-based
models achieved higher accuracy (62.46% =+ 26.08) com-
pared to female perception-based (50% =+ 16.28; p=0.04).
However, there were no significant differences on comparing
female condition-based to male condition-based and female
condition-based to male perception-based (all p>0.08). All
other main effects and interactions were not significant (all
p>0.830).

2) Fl-score Metric: A statistically significant main ef-
fect of sex on Fl-score was observed (p<0.01, 772:0.066))
with greater Fl-score of models evaluated on male par-
ticipants (72.11% =+ 25.18%) than female (59.17% =+
18.07%), regardless the label. There was also a significant
effect of sex and label type (p<0.01,7>=0.079). The post
hoc analysis reviewed; in perception-based models, mod-
els evaluated on males had higher Fl-score (79.84% =+
24.96% than females (53.25% =+ 17.86%; p<0.01). Further-
more, models evaluated on males achieved higher F1-scores
(79.84% + 24.96% using perception-based labels compared
to condition-based labels (64.38% =+ 25.40%; p=0.01). Fi-
nally, male perception-based models achieved higher FI-



scores (79.84% =+ 24.96% compared to female condition-
based (65.09% =+ 18.28%; p=0.03). However, there were
no significant differences in comparing female condition-
based to male condition-based, female perception-based to
male condition-based and female perception-based to female
condition-based (all p>0.22). All other main effects and
interactions were not significant (all p>0.860).

D. Significant Predictors

A statistically significant main effect of sex (p=0.01),
model type (p<0.01), label type (p<0.01), and HRV feature
(p<0.01) was observed. There was also a significant effect
of model type and label type (p<0.01, 7>=0.02). From
the Tukey post-hoc analysis we observed that irrespective
of the model type, condition-based models attained higher
importance means which is likely driven by having less noisy
HRV features.

There was also a significant effect of model type and HRV
features (p<0.01, 772=O.49). For the two ensemble models
(AB, RF) Mean HR was the most significant predictor of
cognitive fatigue. Mean HR was significantly different from
the rest of the models and HRV features (p<0.01). For LR
and kNN, pNN20 was the significant predictor. However, for
SVM, the most important predictor was median NN. There
was also a significant effect of label type and HRV features
(p<0.01, ?=0.38). For the condition-based models median
NN and Mean HR were the most significant predictors. For
the perception-based models, the most important feature was
the Mean HR indicating that irrespective of label type mean
HR appeared to contribute the most at detecting cognitive
fatigue. Another significant predictor that was common for
both labeling approaches was the minimum HR. Although,
there was no interaction effect of sex and HRV features
(p=0.75, 1*=0.03). We performed a post hoc to identify if
there were any common significant predictors. Interestingly,
we observed that irrespective of the sex, mean HR was
the most significant predictor followed by median NN, then
pNN20 and minimum HR.

IV. DISCUSSION

This study investigated sex-equitable cognitive fatigue
detection. This was done through the utilization of HRV
features from an HRC experiment in which participants
performed a collaborative task under fatigued and non-
fatigued conditions. Five machine learning algorithms were
utilized for detecting cognitive fatigue. For each algorithm,
we explored two different labeling approaches; one based on
fatigue perception and another on fatigue condition. Then
tested the effects of labeling approach, model type, and
sex on the accuracy and Fl-score of the models. The key
takeaways of the study include:

1) Labeling ML models by fatigue perception vs. fatigue
manipulation yields different accuracy and F1-scores.

2) Perception-based models trained on data collected
from females have reduced accuracy and F1-score.

3) Mean HR is a significant predictor of cognitive fatigue.

A. Labeling ML Models by Fatigue Perception vs. Fatigue
Manipulation Yields Different Accuracy and F1-score

Depending on the labeling approach, we notice differences
in the overall accuracy and F1-score of the machine learning
algorithms for detecting cognitive fatigue. The two ensemble
machine learning models (i.e., AB, RF) and kNN achieved
higher mean accuracy and F1-score using perception-based
labels. On the other hand, SVM and LR performed better us-
ing the condition-based labels for all the participants. These
results indicate that condition-based labels created linear
separable data which can explain the higher performance
scores of the linear classifiers (i.e., LR, SVM). Previous
research indicates that there is a direct relationship between
cognitive fatigue and HRV [12]. The predominant activity
of the autonomic nervous system during the fatigue state
turned to the sympathetic activity from parasympathetic ac-
tivity [14]. This caused differences in the HRV features that
could construct a decision boundary hyperplane that divides
the two classes (fatigue, no fatigue) when using condition-
based labels. On the other hand, the higher performance
of the non-linear algorithms using perception-based labels
indicates that perceptions do not follow a linearly separable
cluster. These results indicate that the decision to label a
model based on condition or perception should follow the
choice of the appropriate ML algorithm. Nonlinear ML
algorithms are a better fit when a dataset is labeled using
subjective perception labels whereas linear models should be
utilized in the case of the condition-based labeling approach.

B. Models Trained on Data Collected From Female Partici-
pants Have Reduced Accuracy and F1-scores For Perception
Models

Using perception-based ground truth labels, models
achieved significantly lower accuracy and F1-score evaluated
on female participants compared to condition-based ground
truth labels. Accuracy was significantly lower across all
models with SVM showcasing the highest difference and AB
showcasing the lowest difference. For Fl-score we observe
the same pattern, all models achieved lower scores using
perception-based labels. Again, SVM achieved the highest
Fl-score differences while AB had the smallest gap with
F1-score to be close using either label. The low accuracy and
Fl-score of the perception-based models can be attributed
to the way males and females report cognitive fatigue.
Historically, the subjective responses of cognitive fatigue
vary by sex [33], where females tend to report increased
levels of fatigue than males. In this study, all the algorithms
were able to capture the underlying patterns of cognitive
fatigue in the case of the male participants [3]. It is likely
that for this study male participants reported cognitive fatigue
more accurately with respect to their physiological data.
On the other, the perceived fatigue perception had greater
variance for female participant than male. This resulted in
heterogeneous datasets with unclear class boundaries. These
findings highlight that condition-based labels are more appro-
priate to accommodate and address sex-differences in HRC.
Models evaluated on males achieved the highest accuracy



and Fl-score using perception-based labels. However, the
poor accuracy and Fl-score of models evaluated on females
indicate that condition-based labels lead to more equitable
machine learning algorithms.

C. HR is a Significant Predictor of Cognitive Fatigue

The statistical analysis showed that mean heart rate (HR)
contributes the most to predicting cognitive fatigue. Irre-
spective of the labeling approach and sex, HR seems to be
the most significant predictor. This is in line with previous
literature that has reported a positive correlation between
HR levels and cognitive fatigue [34]. This result indicates
using HR as a measure of cognitive fatigue can lead to
the development of more generalizable machine learning
models of cognitive fatigue in HRC, serving as a moderator
to account for varying levels of cognitive fatigue across
different labeling approaches and operator sex. Additionally,
the recent development of new wearable sensor technologies,
such as smartwatches, has offered unobtrusive data collection
that can provide a highly deployable objective measures for
cognitive fatigue detection [33]. Cognitive fatigue can be
monitored during HRC tasks by using wearable devices that
do not limit the freedom of movement and, hence, could
be truly used in real operative scenarios where a human is
interacting with a robot.

D. Sex-Balanced Sampling is Not Sufficient for Designing
Equitable Models

In this study, we carried out sex-balanced sampling for
the detection of cognitive fatigue. The results indicate that
the development of equitable machine learning models re-
quires careful consideration of the labeling approach and
the algorithm type. The overall accuracy and Fl-score was
not significantly different for the two labeling approaches.
However, using perception-based models we observed sig-
nificant differences in accuracy and Fl-score between the
sexes [3], [33]. Specifically, models evaluated on female
participants had drastically reduced accuracy and F1-score
irrespective of the algorithm type used. This has implications
on designing algorithms that are built on perception due to
differences in how males and females report fatigue [3],
[20]. Studies have shown that females tend to be more
concerned about task achievement than males and often have
a lower expectation of success [35], [36]. These studies
suggest that female participants perceived greater fatigue
magnitude than male participants would and therefore incor-
rectly aligned their physiological responses to higher fatigue
perceptions [35], [36]. Additionally, we observed that the
choice of the machine learning algorithms seems to lead
to different accuracy and Fl-score for males and females.
We observed cases where one algorithm performs better
at detecting cognitive fatigue for males while the same
algorithm leads to poor performance results for females.
These results indicate that a more comprehensive exploration
might be needed for the development of equitable machine
learning models where separate algorithms should utilize for
the sexes.

E. Machine Learning Supports Workers Under Cognitive
Fatigue

Adopting the observations of this study can lead to the
design more effective HRCs. By detecting the cognitive
fatigue state of a worker through machine learning support,
we can improve their ability to perform tasks more efficiently
and safely. A promising way is tuning the interaction with
the robot depending on the operator’s cognitive fatigue state
by implementing robot control architecture that allows the
robot to detect and respond to the cognitive fatigue needs
of its collaborator. However, the imperfect accuracy, and
consequently the presence of false cognitive fatigue alarms
should be considered in order to achieve a calibrated trust
and reliance on automation [37]. Trust and reliance should
be part of a closed-loop which involves various factors,
including individual, organizational, cultural, and environ-
mental context that impact the trust evolution and reliance
on automation [38].

F. Study Limitations and Future Work

One of the limitations of this study is the use of a singular
question to report cognitive fatigue which can result in
partial understanding and reporting of fatigue perceptions.
There is a trade-off of utilizing larger composite surveys as
these are more invasive to the task thus allowing for less
frequent monitoring; however, future work should consider
the accuracy of responses to surveys as the ground truth
for someone’s fatigue. This limitation in itself provides
the foundation for discussion on the use of any subjective
response as operator’s fatigue state. Another limitation is that
the participants recruited in this study were college students
predominately seeking advanced degrees in engineering.
Future work should focus on industry workers as the ma-
jority of jobs in manufacturing are taken up by high-school
graduates [39]. Furthermore, more experienced workers may
have different strategies to compensate for fatigue, such as
talking to coworkers or offloading work [5], and may report
fatigue levels differently. Efforts should be made to ensure
a representative sample of younger and older, and male and
female workers in the planned participant pool. Similar to the
need to consider sex-differences in model development, age
of the operator will impact how fatigue impacts perceptual
and physiological indicators, thus future work should con-
sider age-parity in model development. Furthermore, while
a large volume of data was collected for each sample, a
sample size of eight males and eight females is susceptible
to recruiting outliers, thus future work should utilize larger
between-subjects sample sizes. Finally, this study focused
on the detection of cognitive fatigue in an offline setting
using a dataset that was constructed from an HRI case study.
The findings presented in this study will be adopted for the
next stage of our research where we will feed cognitive-state
HRV data to machine learning algorithms to detect worker
cognitive fatigue state. Our approach will include a real-time
loop where the robot adapts its behavior (e.g., stop, slow,
or prompt for action and remote supervision). based on the
operator’s cognitive fatigue state.



V. CONCLUSION

This study investigated the development of equitable ma-
chine learning models for cognitive fatigue detection. The
developed machine learning models were evaluated based
on the LOSO cross-validation and the performance of the
models investigated under two different labeling approaches
(i.e., induced fatigue, perception). Our findings indicate that
perception-based labels led to lower accuracy and F1-Score
for models trained on data collected on female participants.
Models trained on data collected from male participants
achieved higher accuracy and F1-Score using perception-
based ground truth labels. Condition-based labels led to the
development of more sex equitable machine learning models
where accuracy and F1-Score are statistically identical and
HR is equally important for the development of the models.
These findings demonstrate that practitioners should consider
sex differences to develop more equitable ML models in
order to achieve more effective HRCs.
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