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Abstract— Augmented Reality (AR) enables the transmission
of intent using the physical area in which humans and robots
interact as a shared canvas. Studies exploring AR for human-
robot collaboration have reported mixed findings on the rela-
tionship between cognitive workload and task performance. In
this study, we developed an AR user interface (UI) that guides
the user to perform a pick-and-place task while collaborating
with a robot. A repeated measures mixed-methods study with
sixteen participants demonstrated that AR UI significantly im-
pacted task performance, where users traveled longer distances
at slower speeds to pick-and-place objects than the control
group. Additionally, UI significantly impacted the cognitive
load, where participants reported higher NASA-TLX scores
while using AR UI. Finally, users reported significantly lower
situational awareness and low usability scores while using AR
UI. Our findings suggest that the AR UI negatively impacts
human-robot collaboration, calling for further investigation.

Human-robot collaboration, cognitive workload, human
factors, mixed reality

I. INTRODUCTION

The fourth industrial revolution, or Industry 4.0, primarily
aimed to adapt and utilize collaborative robots for human-
robot collaboration to improve safety, accuracy, performance,
and reduce workload [1], [2]. Another aspect of Industry
4.0 is to develop new forms of human-machine interaction,
such as touch interfaces, haptic systems, virtual reality (VR)
and augmented reality (AR) systems, etc., to reduce errors
and improve safety and efficiency [3]. While Industry 4.0
primarily focuses on increasing interconnectivity and smart
automation to achieve optimum performance, productivity
and enhance efficiency, Industry 5.0 focuses on refining the
interaction between humans, machines, and robots by devel-
oping human-centered design solutions where humans and
robots can collaborate to enable personalized autonomous
actions and solutions through enterprise social networks [4]–
[6].

A user interface (UI) plays a critical role as the com-
munication gateway between users and robots, allowing
them to perform various actions efficiently and effectively to
achieve goals [7], [8]. UIs range from simple 2-D displays
to complex state-of-the-art 3-D displays (e.g., VR, AR, etc.).
However, irrespective of the type of UI, some characteristics
and features, including consistency, feedback, reversal of
action, support internal locus of control, reduced short-term
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memory load, etc., are vital for a good interface design.
Although these are crucial factors for efficient functioning
and human-robot collaboration, the short-term memory load
and cognitive load that interface asserts on humans should
be given special attention when considering state-of-the-
art head-mounted extended reality (XR) devices, including
augmented reality (AR) and virtual reality (VR) headsets [9],
[10]. We refer to the broad category of state-of-the-art XR
devices as any HMD devices that are semi- or fully immer-
sive, including Oculus, HTC Vive, HoloLens, etc. Studies
investigating the use of XR technologies for complex human-
robot collaborative tasks and daily tasks have observed mixed
findings where few observed that the users experience a
higher cognitive workload and vice versa [11]–[17]. The
cognitive workload cannot be directly attributed to the XR
technology as various factors, including task complexity,
duration of the task, interface design, and device, plays a
significant role [18]–[20]. Primary reasons attributed to an
increased cognitive workload while using XR technology for
human-robot collaboration include cumbersome technology,
time of use, the field of view, lack of feedback, delay in
processing feedback, and task complexity [21], [22]. Hence,
researchers and practitioners should consider these factors
and focus on improving the interface design (feedback,
response) and other parameters (task complexity, time of use)
while using head-mounted devices, including AR and VR
headsets, for human-robot collaboration.

Situational awareness is another critical factor to consider
while developing interfaces for human-robot collaboration.
Situational awareness or Situation Awareness (SA) is the
ability to perceive and comprehend what is happening in
the environment around you at any given time or space and
predict what can happen in the future [23]. Prior studies
have validated that SA significantly impacts decision-making
and is affected by the cognitive load and resources available
while making decisions [24], [25]. Researchers have reported
a lack of SA as a primary cause leading to errors, failures,
and fatalities in complex systems such as aviation, manufac-
turing, and mining [26]–[29]. While chances for lapses in
SA are common in complex environments, their likelihood
in environments involving higher automation (human-robot
collaboration, autonomous driving, etc.), along with assistive
technology, is not well-researched [30], [31]. The consensus
is that increasing automation and providing assistive technol-
ogy during human-robot collaboration can offload the burden
on the user and reduce their cognitive load leading to a
better SA. However, few studies have investigated how AR
interfaces impact SA during human-robot collaboration.



We developed an AR assistive interface for human-robot
collaboration to address these gaps. We compared its impact
on users’ cognitive load, task performance, and situational
awareness while performing a collaborative pick-and-place
task to a control group performing the same task. Using
validated questionnaires, physiological biomarkers, and other
objective data to capture cognitive load, task performance,
and situational awareness, we hypothesize that AR assistive
interface for human-robot collaboration will improve task
performance and situational awareness and reduce the cogni-
tive workload during a human-robot collaborative pick-and-
place task.

II. RELATIVE WORK

A. Augmented reality and Human-Robot Interaction

In human-robot collaboration, robot motion inference or
otherwise, the gulf of evaluation refers to the lack of ability
of a user to understand and assess a system [32], [33]. For
example, a user might believe that a robot perceives and
tracks the user and the surrounding environment, but this is
untrue. This results from robots’ inability to communicate
cues and information between the robot and the user. The
information exchange is usually based on two dimensions:
the communication medium and the communication format.
Currently, the two commonly manifested media in human-
robot collaboration are: 2-D displays and HMDs (VR, AR,
etc.) [34]–[37]. However, 2-D displays might not be able
to communicate complex paths and motions transparently,
leading to a focus switch from the real-world environment
to the communication tool leading to an overall delay in
communication [35], [38]. Therefore, the design of intuitive
user interfaces is critical to unfold the full potential of human
skills and provide more efficient human-robot interaction [7].
Intuitive AR media presented as graphical user interfaces
well mapped to specific human-robot collaboration tasks can
allow users to focus on task goals [39]. Recent research has
investigated using AR to guide the user to complete a task.
Text instructions are usually provided to navigate the user in
human-robot collaborative tasks similar to ones performed
on industrial lines [11]–[16]. These texts contain information
regarding the direction that should be taken to complete a
task, the rotation direction or how much rotation is required,
and information regarding the final destination. Another form
of guidance is the representation of the holographic items
needed in a task [11]–[17]. These representations guide
the location of the items to complete an assembly or the
type of item needed. Finally, virtual guidance in the form
of arrows has been proposed to help the users complete
a task [11]. These arrows provide information about the
next move at each stage of the task [11]. Another recent
study developed an AR interface that provides geometrical
path planning, spatial mapping, and virtual models with
arrows for completing a virtual pick-and-place task [40]. A
few other recent studies investigating pick-and-place tasks
have focused on robot programming using AR interfaces
with the help of augmented trajectories. These studies have
reported AR to be easier compared to using a keyboard

for navigation [41], [42]. Prior studies have utilized AR
in human-robot collaboration primarily for various assembly
tasks as a gateway for collaboration in assembling various
components and in some pick-and-place tasks to comprehend
the robot programming. While these are critical in advancing
our knowledge to develop collaborative robots, this study
focuses on evaluating an AR-based UI that guides the user
to complete a task.

B. Cognitive Workload and Human-Robot Interaction

In an environment involving complex human-machine
systems and other interconnected intelligent machines where
the role of the human is critical, monitoring users’ cognitive
workload is crucial for ensuring efficiency and safety [43],
[44]. Pick-and-place is among the most common tasks in
manufacturing and assembly lines where industrial robots
are used extensively [45]–[47]. While picking randomly
positioned parts from a surface and placing them into another
place is logically a simple task for a human but could
be physically challenging. Whereas for robots, this same
task could be logically and logistically challenging [48]. A
major difficulty is locating and gripping components in the
correct orientation [48]. However, robots can be controlled
manually, where a good level of precision can be achieved
using remote joysticks. To accomplish this, humans and
robots should form a dynamic system working together to
achieve a common goal. One way to achieve this collabo-
rative, dynamic system is by incorporating intuitive media
presented as graphical user interfaces mapped to specific
human-robot interaction tasks can allow users to focus on
task goals and lead to more efficient human-robot interac-
tion [7]. Specifically, AR has immense potential as assistive
technology in human-robot collaboration by providing users
with helpful information when needed, and previous research
has shown that guidance and holographic information can
lead to better performance results and augment the human-
robot collaboration [11]–[17]. However, the effect of AR
on cognitive workload and task performance is unclear as
researchers have shown both positive and negative impacts of
using AR to present information to a user. Some studies sug-
gest that AR positively affects cognitive workload and task
performance [39], [49]–[51]. Whereas some studies show
evidence of cognitive overload using AR. But it should be
noted that the overload is primarily attributed to ergonomic
and usability issues and, more specifically, to the prolonged
use of technology, the field of view, and lag in providing
the information to the user [18], [52]–[54]. Additionally, one
study that reported AR induces lower cognitive workload
as compared to a 2-D interface for a pick-and-place task
used gestures in the AR interface and keyboards and mice
in the 2-D interface to perform the task, which is a significant
confounder [41].

Although the findings from these studies offer important
insights, one primary limitation is that all these studies
relied solely on subjective feedback (i.e., NASA TLX, NASA
RTLX, surgical TLX) to measure cognitive workload. While
subjective perceptions of cognitive workload are valuable



and collected using validated tools, it also leads to many
challenges since they cannot be objectively compared. More-
over, in most studies, operators often report their cognitive
workload at the end of the task, which fails to capture
the cognitive load in real time while performing a task.
This calls for utilizing objective methods that can monitor
cognitive load unobtrusively while performing a task. One
such validated method is eye-tracking, which can capture
cognitive workload continuously. One of the most popular
and validated objective methods to seamlessly monitor a
user’s cognitive workload is pupillometry, and studies have
used various metrics, including pupil diameter, blinks, etc.,
to quantify the change in cognitive workload [55]–[62].
Researchers have reported a positive correlation between
pupil diameter, task difficulty, and cognitive load [56], [63],
suggesting that cognitive workload corresponds to pupil
dilation [57], [64], [65]. The increase in pupil diameter while
performing a cognitively demanding task is associated with
the mental effort required to complete a task [66]. However,
when the limits of processing information are exceeded,
pupil dilation reaches the maximum, and no further increases
are noticed [64]. Blinks can also provide insights into the
cognitive load, where cognitively demanding tasks lead to
delays in blinks, known as attentional blinks [60]. Studies
have reported a decrease in blink rate as the complexity
of the task and cognitive load increases [59], [61]. This
is primarily attributed to the operator’s focus on capturing
all the provided information, especially in vision-demanding
tasks [59]. Blink durations are also used to quantify and eval-
uate cognitive load, where studies have reported increased
blink durations while performing cognitively challenging
tasks [67], [68].

III. METHODS

A. The Collaborative Task

As briefly mentioned in the introduction, pick-and-place
is a common task in an assembly line. To replicate this
task in a lab setting, we utilized a collaborative robot where
participants controlled a UR3e (Universal Robots, DK) col-
laborative robot using joystick input controls to pick up
objects from a surface and place these in a bin. Participants
had access to six degrees of freedom but were asked to
control the X, Y, and Z directions. The movement speed
of the robot was kept uniform and was not controllable by
the participants.

B. Augmented Reality User Interface

We developed an AR interface in HoloLens 2 to investigate
the efficacy of augmented visuals in performing a pick-
and-place task (Fig. 1). We designed four unique visuals to
evaluate the assistive potential of AR interfaces. The visuals
comprise two assistive path lines, one robot gripper tracking
line, and a holographic robot gripper in the optimal position
to pick up the current object. The two assistive path lines,
yellow and white (Fig. 1(a)) point to the location of an
object. The user must follow the yellow line, representing
the optimal path to pick-and-place an object. To identify the

optimal path, we developed an algorithm that detects the
robot’s end effector and the object’s location to calculate
the shortest path in the robot’s cartesian plane. The white
line provides information on the user’s proximity to an
object. This line is generated by calculating the non-cartesian
distance between the robot end effector and the object
location. The robot gripper tracking line, blue line (Fig. 1(b)),
provides information on the path the user followed to pick-
and-place the object. This line is calculated by tracking the
user’s trajectory moves during the pick-and-place task. The
holographic robot gripper helps the users to position the
gripper to the optimal location for pick up by completely
overlapping the holographic gripper (Fig. 1(a), Fig. 1(b),
Fig. 1(c)). These visuals are synchronized using QR codes
scanned with the HoloLens 2 Spatial Perception Camera.
This provides real-time 3d position coordinates that can be
used to configure object location and robot hand movements.
The result is a dynamic assistance interface that adds another
layer of visual perception to benefit task performance. In
a traditional setting, a HoloLens 2 (or other AR devices)
is controlled using hand gestures or a remote. However, in
the study, we developed intuitive voice commands that allow
the participant to activate, deactivate, or calibrate the visuals
to prevent the need for buttons or distracting inputs. For
example, when the participant says “show lines” the optimal
(yellow) and functional (white) line guides are set to active.
A holographic robot gripper in optimal object pick-up posi-
tion is shown when a participant says, “show gripper.” This
is beneficial as the participant is both maneuvering a joystick
and focusing on the robot’s movements. We hypothesize that
the dynamic interface and compact visualizations overcome
the common augmented reality constraint of small field-of-
view (FoV) to enhance task completion and performance.

Fig. 1: User Interface

C. Participants
Participants for this study included sixteen dominant right-

hand students (9M, 7F) attending a public University. All
participants had an age distribution of 25.25 ± 4.31 years.
Participants in the study signed a consent form and were
subject to the experiment protocols approved by University’s
Institutional Review Board under IRBNO:2022-233. Upon
consent, participants reported their experience with industrial
robots, joysticks, and AR. None of the participants reported
prior experience with robots and AR. Additionally, the
average participant reported slight familiarity with joystick
devices utilized by the participant to control the robot.
Participants were compensated with a $15 Amazon gift card
for their time.



D. Procedure

In this study, participants completed two sessions; in one
session, the participants performed the task without the
AR UI guidance (no UI AR), and in the other session
utilized the developed AR UI. The order of the sessions
was counterbalanced to control for order effects. Further,
to mitigate the learning or order effect, participants were
allowed to practice the task and use AR UI until they felt
comfortable and attained equal experience. In each session,
the participants picked and placed eight objects. In the UI
AR session, the participants started a pick-and-place trial
by saying the color and shape of the object they wanted to
pick-and-place (i.e., red cube) and then the activation of the
visuals and the holographic gripper using voice commands
(i.e., show lines, show gripper). At the end of the trial,
the participants deactivated the visuals and the holographic
gripper using voice commands again. The participants did
hot have to memorize any commands or the order of the
objects that needed to pick up. The experimenter provided
this information to the participants.

E. Dependent Variables

1) Task performance: Trajectories of each pick-and-place
object were recorded at a frequency of 100 Hz. Task per-
formance is quantified using two different measurements: (i)
average speed, which is defined as the traveled trajectory
length divided by the time to pick-and-place an object, and
(ii) travel distance, measured by calculating the distance
covered to pick-and-place each object. The distance and time
to pick up the objects in the UI AR session start after the
participants activate the visuals using the voice command in
order to have a fair comparison between the two sessions.

2) Subjective Responses: After each session, the partic-
ipants completed the situation awareness rating technique
(SART) to measure situational awareness and the NASA
TLX to quantify cognitive workload. SART consists of
three subscales: attentional supply, attentional demand, and
understanding of the task. The SART composite score was
calculated as understanding-(demand-supply). NASA TLX is
a multidimensional assessment tool consisting of six subjec-
tive subscales from very high to very low in terms of their:
mental demand, physical demand, temporal demand, effort,
performance, and frustration. In this study, we calculated
the overall workload by averaging the score of the six
subscales. Finally, the participants were asked to complete
a system usability scale (SUS) questionnaire to understand
the usability of the AR interface.

3) Objective Response: Eye-tracking: We analyzed three
eye-tracking metrics based on the literature review (see
Section II-B). Specifically, we collected blink rates and
duration throughout the pick-and-place task to monitor and
comprehend the cognitive workload. Data were collected at
200 Hz using the Pupil Labs add-on devices during each
session.

4) Statistical Analysis: Statistical significance was de-
termined through paired t-tests, or Mann-Whitney U tests
on all dependent responses, with significance reported at α

= 0.05. We used a parametric test for the dataset created
from the study. The normality of the data for the parametric
test was determined using a Q-Q plot. Equality of vari-
ances was verified using Levene’s test and using boxplots.
Independence was assured by our counterbalanced design.
The t-tests were separately run on each task performance
metric and subjective responses to test the effects of the MR
UI. Separate Mann-Whitney U tests were performed on eye
metrics to test the effects of the MR UI on blink count and
blink duration while completing the task.

IV. RESULTS

A. Task Performance

Table I represents the average values of the two task
performance metrics (i.e., travel distance, average speed)
collected in the AR UI and no AR sessions. The t-test
showed a significant increase in travel distance (t=5.29, p-
value<0.01) in picking and placing the objects using the AR
UI. Additionally, a significant difference was observed in the
average speed of picking and placing the objects (t=7.55, p-
value<0.01).

B. Subjective Responses

Table II represents the average values of the six sub-
scales of the NASA TLX questionnaire collected in the
AR UI session and the no AR session. On analyzing the
response collected using NASA TLX, the t-test showed
a significant increase in mental demand (t=3.01, p-value
<0.01), effort (t=3.20, p-value<0.01) and frustration (t=3.19,
p-value<0.01) for the AR UI session. Additionally, per-
formance failure perception increased significantly (t=4.46,
p-value<0.01) after the AR UI session. Further, the AR
UI session significantly increased the overall workload
(t=3.67, p-value <0.01). However, the scores of physical
demand (t=0.30, p-value=0.77) and temporal demand (t =
0.17, p-value=0.87) did not vary significantly between the
two groups.

Next, we performed a t-test with the response collected
using the SART questionnaire. The t-test showed a significant
difference in the overall SART scores between the two
groups (t=4.08, p-value<0.01), where participants showed
low SA during the AR session. Further, to evaluate which
components of the SART questionnaires varied significantly,
we performed another set of t-tests with the sub-scales
of SART, which included attentional demand, attentional
supply, and understanding. The t-test showed a significant
difference in the attentional demand (t=5.19, p-value<0.01),
where participants reported high scores during the AR ses-
sion. However, the attentional supply (t=0.27, p-value=0.79)
and the understanding (t=1.60, p-value=0.13) scores did not
vary significantly between the AR UI and no AR UI sessions.
Finally, on analyzing the SUS score collected using the
systems usability scale for comprehending the usability of
the AR UI, the participants reported an average SUS score
of 60.31±17.6.



C. Eye Metrics

Table III represents the average values of the eye metrics
collected in the AR UI session and the no AR session. The
results indicated that the blink rate (U=150, p-value=0.67)
and the blink duration (U=106, p-value=0.41) scores did not
differ between the AR UI and no AR UI sessions.

V. DISCUSSION

In this study, we developed an AR UI to guide users in
performing a collaborative pick-and-place task. A user study
was conducted to investigate the impacts of this UI on task
performance, cognitive workload, and situational awareness.
Additionally, a system usability score was collected to mea-
sure the usability of the developed UI.

The key takeaways of the study include:
1) The AR UI increased cognitive workload.
2) The AR UI increased travel distances to complete the

pick-and-place and place task.
3) The AR UI had a negative impact on situational

awareness
4) The average reported usability score was less than the

average accepted SUS score when using the AR

A. The AR UI increased cognitive workload.

The perceived workload collected using the NASA TLX
questionnaire indicated that the participants reported signifi-
cantly higher workload levels during the AR UI session than
the no AR UI. Moreover, the task performance results (i.e,
travel speed, travel distance) suggest that the task performed
with the assistance of the AR interface was more cognitively
demanding. These results align with the findings from a few
other studies where users have reported an increased cogni-
tive load while using AR systems [11]–[17]. Considering that
the robotic pick-and-place task in both sessions remained the
same, one possible explanation for the increase in cognitive
workload is that additional cognitive effort is needed to
interpret both the real-world surroundings and the overlayed
features presented in the augmented reality interface. The
AR UI had a detrimental influence on the cognitive burden
potentially from this dual processing leading to an increase in
cognitive effort. Another potential reason that could explain
the increased workload is the users’ lack of familiarity with
the AR systems and the associated challenges. These findings
highlight the importance of considering cognitive workload
when collaborative robots are designed with AR support.
Additionally, to expand on these findings, future studies
should explore recruiting participants with experience using
VR/AR systems or consider a longitudinal study to further
control the learning effect.

B. The AR UI increased travel distances to complete the
pick-and-place task.

On analyzing the efficacy of the AR UI in assisting users in
performing a collaborative pick-and-place task and its impact
on task performance, we observed that all the participants
successfully picked and placed all the objects using the AR
interface. However, the results indicated that the AR UI

led to longer travel distances to pick-and-place the objects
compared to the control group. This finding suggests that
the participants did not follow the optimal path, leading
to longer travel distances. Another possible explanation is
that the participants had difficulties positioning the actual
robotic gripper to the virtual gripper. This mismatch led to
more movement and consequently to longer travel distances
and times. This negative impact on task performance aligns
with the increasing cognitive load reported while using the
AR UI. Prior studies have shown that cognitive workload
is a significant factor influencing human performance [69]–
[73]. The scientific theory supporting the impact of workload
on performance is Wickens’ multiple resource theory which
states that humans have only a limited amount of cognitive
resources to dedicate to a task, and when the task at hand
exceeds the available resources it leads to inefficiency and
deteriorated performance [74]. While prior studies have
reported similar findings where AR UI has a negative impact
on user performance, a few other studies have reported the
efficacy of augmented reality tools in human-robot collabora-
tion [12], [15], [17]. Although our results indicate that using
the AR UI had a negative impact on travel distance and travel
speed, it should be noted that all the participants successfully
completed the task. The decreased performance can be
attributed to the lack of experience and the cumbersome AR
system. Our findings indicate the efficacy of AR systems to
support workers during human-robot collaboration tasks, but
clearly, further development, training, and better AR systems
are required for actual deployment in assembly lines.

C. The AR UI had a negative impact on situational aware-
ness

Analyzing the data collected using the SART question-
naire, we observed that the perceived SA was significantly
lower among the AR UI session group than the control group.
Further, comparing the subscales of SART, we observed that
the attentional demand was significantly higher during the
AR UI session. These findings align with the observations
of cognitive load, where participants in the AR UI session
reported a higher cognitive load. However, compared to
the existing literature, our findings suggest some deviations
regarding situational awareness. Prior studies that compared
AR-based interfaces to a control group for users operating
Unmanned Aerial Vehicles (UAVs), heavy vehicles, exca-
vators, etc. reported an improved SA [75]–[78]. However,
it should be noted that one study that also investigated
cognitive load along with SA while using the AR device re-
ported that cognitive load decreased while SA increased [78].
This observation is insightful because we observed similar
findings but inversely, where cognitive load increased, and
situational awareness decreased. These observations indicate
the inverse relationship between cognitive load and situa-
tional awareness.

Finally, these findings align with the usability score re-
ported by the participants, which was significantly lower than
the consensus score of 68 for an average usable system.
Based on the open-ended interview with participants after



TABLE I: Task Performance Results

Task Performance Metrics p-value for paired t-tests Descriptives
AR UI No AR UI

Average travel distance (m) <0.01* 1.62±0.27 1.30±0.15
Average speed (m/s) <0.01* 0.01±0.005 0.03±0.003

TABLE II: NASA TLX Results

NASA TLX p-value for paired t-test Descriptives
AR UI No AR UI

Mental Demand <0.01* 56.55±21.96 33.44±21.35
Physical Demand 0.77 19.06±14.74 18.13±17.69

Temporal Demand 0.86 30.31±18.93 29.69±16.78
Performance <0.01* 15.95±9.70 39.06±18.99

Effort <0.01* 50.95±25.57 28.75±17.84
Frustration <0.01* 40.88±32.69 15.94±13.19

Composite score <0.01* 39.47±17.63 23.65±11.94

TABLE III: Eye Metrics Results

Eye Metrics p-value for mann-whitney test Descriptives
AR UI No AR UI

Blink rate (count) 0.67 29.18±31.20 34.43±41.00
Blink duration (sec.) 0.41 0.18±0.02 0.19±0.04

both sessions, all the participants mentioned that using AR
to complete the task was not easy. However, they also
mentioned that it got better as they progressed through
the task, suggesting that it could be a matter of training
as all participants were first-time users. Additionally, the
participants mentioned that they liked the interface, but the
depth perception, resolution, and field of view were limited.
Users suggested adding more visual cues and text in the
interface could potentially help improve the usability. Finally,
a few participants reported that the AR technology is “not
there” yet for complex tasks. On a separate note, evalu-
ating each question from the SUS score generated similar
themes: the users found the system cumbersome, the need
for guidance from a technical expert to set up the system,
and some inconsistencies. However, the users reported that
they imagine that most people would learn to use this system
very quickly and that various functions in the system are well
integrated. These observations suggest that although the AR
technology is not there yet, AR/VR has the potential to be
transformative and used in human-robot collaboration tasks
or similar complex tasks.

VI. STUDY LIMITATIONS

One limitation is that the participants recruited in this
study were college students predominately seeking advanced
degrees in engineering. Future work should focus on industry
workers as the majority of jobs in manufacturing are taken up
by high-school graduates [79]. Additionally, efforts should
be made to ensure a diverse sample of older and younger in
the planned participant pool. Another limitation of this study
is that all the participants had no previous experience with
AR. All the participants performed practice trials using the
AR UI. However, the use of this new technology potentially
required more mental effort to comprehend. Future studies
will investigate the time-on-task effect, where the learning

effect will be examined based on earlier and later trials of
using the AR UI.

VII. CONCLUSION

In this study, we developed an AR UI to guide users
in performing a pick-and-place task. The interface includes
visuals that direct the user to locate an object and place the
robot gripper in an optimal location for picking up an object.
By conducting a user study where participants performed the
pick-and-place task with the use of the AR UI and comparing
them to a control group, we investigated the effects of
the AR UI on task performance, cognitive workload, and
situational awareness. Our findings indicate that the AR UI
had a negative impact on task performance. Additionally,
the AR UI significantly increased the cognitive workload
perceptions and reduced situational awareness indicating that
the task was more cognitively demanding when using the
developed UI. However, there were no significant differences
in blink rate and blink duration. These findings suggest that
using the AR UI has a negative impact while performing
collaborative tasks. However, the anecdotal comments from
users indicated that the negative impact is primarily because
of the limitations of the current AR systems and their
participant’s lack of familiarity with AR. We believe that
advancements in AR technology have the transformative
potential to be used in collaborative environments.
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