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ABSTRACT
One of the primary aims of Industry 5.0 is to refine the interac-
tion between humans, machines, and robots by developing human-
centered design solutions to enhance Human-Robot Collaboration,
performance, trust, and safety. This research investigated how de-
ploying a user interface utilizing a 2-D and 3-D display affects
participants’ cognitive effort, task performance, trust, and situa-
tional awareness while performing a collaborative task using a
robot. The study used a within-subject design where fifteen partici-
pants were subjected to three conditions: no interface, display User
Interface, and mixed reality User Interface where vision assistance
was provided. Participants performed a pick-and-place task with a
robot in each condition under two levels of cognitive workload (i.e.,
high and low). The cognitive workload was measured using sub-
jective (i.e., NASA TLX) and objective measures (i.e., heart rate
variability). Additionally, task performance, situation awareness,
and trust when using these interfaces were measured to understand
the impact of different user interfaces during a Human-Robot Col-
laboration task. Findings from this study indicated that cognitive
workload and user interfaces impacted task performance, where a
significant decrease in efficiency and accuracy was observed while
using the mixed reality interface. Additionally, irrespective of the
three conditions, all participants perceived the task as more cog-
nitively demanding during the high cognitive workload session.
However, no significant differences across the interfaces were ob-
served. Finally, cognitive workload impacted situational awareness
and trust, where lower levels were reported in the high cognitive
workload session, and the lowest levels were observed under the
mixed reality user interface condition.
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1 INTRODUCTION
Industry 5.0 is the latest wave of the industrial revolution that
goes beyond efficiency and productivity and focuses on improving
how humans can work and collaborate with advanced technol-
ogy, including robots, to improve collaboration, performance, and
safety, with workers as the center [48, 83]. The advancement of

technologies can play a significant role in supporting and enhancing
Human-Robot Collaboration (HRC). Among various areas where
these advancements could significantly impact one is the user inter-
face, which acts as the communication gateway between users and
robots [59, 76]. Prior studies have reported that an ideal user inter-
face can improve task performance and productivity and reduce the
short-term memory load of the users [57, 66]. User interfaces (UI)
range from simple 2-D displays to complex state-of-the-art 3-D dis-
plays developed in recent years (e.g., virtual reality, mixed reality,
etc.). While the capabilities of each interface can be significantly
different, a UI’s core characteristics and features should aim to
achieve consistency, feedback, support internal locus of control,
reduce short-term memory load, etc., to develop a useful user in-
terface [29, 66]. Studies have investigated the impact of various
user interfaces on training programs, teaching, as a distraction
method, etc. Most of these studies reported virtual reality (VR),
mixed reality (MR), and extended reality (XR) interfaces as more
realistic, immersive, assistive, and efficacious than a traditional 2-D
display or no user interface [7, 31, 61]. However, it should be noted
that these studies have also reported the VR/MR/XR technologies
to be comparatively more cumbersome and, in some instances,
induce a higher cognitive load on the users while completing a
task[16, 19, 42].

The cognitive load associated with a task can be defined as
the relative demand imposed by a particular task in terms of the
mental resources required [70]. This is a critical factor when con-
sidering HRC, as prior studies have reported this to impact the
collaboration’s effectiveness and efficiency significantly[10, 27, 47].
Researchers have noted that if a robot is too complex or its interface
is unclear, the cognitive load on the human collaborator may be
too high, resulting in decreased performance and increased error
rates[41]. Conversely, if the robot is too simple or its interface is
too limited, the cognitive load on the human may be too low, lead-
ing to disengagement and reduced engagement with the task[41].
Therefore, it is important to carefully design and optimize the ro-
bot interface and interaction to manage the cognitive load of HRC.
As briefly mentioned earlier, interfaces act as the communication
gateway between users and robots; hence interfaces should aim
to bridge the gap between the gulf of evaluation and the gulf and
execution, i.e., understanding the state of the system and execut-
ing an action to accomplish a specific goal. In HRC, three critical
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factors affect the gulf of evaluation and execution: (i) short-term
memory load and cognitive load that the interface asserts on hu-
mans, (ii) situational awareness, and (iii) human trust in the system
and interface[38, 65, 71]. Studies investigating the use of XR tech-
nologies for complex HRC have observed mixed findings, where
few observed that the users experience a higher cognitive workload
and vice versa[3, 13, 33, 50, 52, 53, 59]. The cognitive workload can-
not be directly attributed to the XR technology as various factors,
including task complexity, task duration, interface design, device,
etc., play a significant role [6, 18, 84]. Primary reasons attributed
to an increased cognitive workload while using XR technology for
HRC include cumbersome technology, time of use, the field of view,
lack of feedback, delay in processing feedback, task complexity,
etc. [12, 62]. Hence, researchers should consider these factors and
focus on improving the interface design and other parameters (task
complexity, time of use) while using XR headsets for HRC. When
discussing the role of cognitive load on HRC and how it affects task
performance and productivity, it is critical to focus on situational
awareness (SA). Situational awareness is the ability to perceive and
comprehend what is happening in the environment around you
at any given time or space and predict what can happen in the
future[25].

Cognitive load significantly impacts an individual’s ability to
maintain situational awareness, and prior studies have reported
that when a person experiences a high cognitive load, their at-
tentional resources are limited, and they may not be able to pro-
cess all the information available to them fully [67, 72]. This can
lead to decreased situational awareness and an increased risk of
errors or accidents. Researchers have noted that a lack of situa-
tional awareness often leads to higher chances of errors, failures,
and fatalities in complex systems such as aviation, manufacturing,
and mining [22, 24, 55, 68]. Therefore, it is important to manage
cognitive load appropriately to maintain situational awareness in
high-stress situations. While opportunities for lapses in SA are com-
mon in complex environments, their likelihood in environments
involving higher automation, specifically in HRC along with as-
sistive technology, is not well-researched [23, 54]. The consensus
is that increasing automation and providing assistive technology
during HRC can offload the burden on the user and reduce their
cognitive load leading to a better SA.

For a user to utilize any assistive technology during a complex
task, including HRC, it is imperative that the user trusts the assistive
tool [45, 64]. Trust is a critical factor influencing the adoption of as-
sistive technologies, as users rely on tools they believe will perform
as expected[2, 5]. Specifically, the literature on trust in HRC related
to assistive technology, such as user interfaces, highlights the im-
portance of trust in improving performance and productivity [58].
Additionally, factors including transparency, predictability, and re-
liability play a significant role in building trust in user interfaces
[43, 56]. Further, the design of the interface, including its appear-
ance and functionality, can impact the user’s level of trust[20, 40].
Trust also affects the user’s performance and productivity, as higher
levels of trust lead to increased confidence in the technology, which
results in more efficient and effective use[63, 87]. Furthermore, trust
can be affected by the robot’s behavior and communication and
how it responds to the user’s actions and requests[78, 81, 85]. There-
fore, building trust in assistive technology is critical for achieving

optimal performance and productivity in HRC. Specifically, prior
studies using mixed reality interfaces reported it to enhance trust
and task performance by providing users with additional informa-
tion, sensory feedback, and natural representation [58, 74]. While
these findings are promising, the impact of trust on productivity is
still an open question and further research is needed to determine
the optimal levels of trust necessary for maximizing productivity
in HRC and mixed reality environments.

To investigate these research gaps and understand the impact
on users’ cognitive load, task performance, trust, and situational
awareness while performing a collaborative pick-and-place task
with various levels of cognitive demand, we conducted a system-
atic and comprehensive human-subject study. This study design
allowed us to investigate highly relevant and interrelated human
factors considerations in HRC. As such, this study employs sys-
tematic empirical manipulation of cognitive workload and the use
of an assistive interface to collect multimodal responses that in-
clude multiple-task performance metrics, subjective perceptions,
and physiological responses to understand their interrelations and
impact on HRC. We hypothesize that MR assistive interface for
HRC will improve task performance and situational awareness and
reduce the cognitive workload during a human-robot collaborative
pick-and-place task. Furthermore, we hypothesize MR interface
will be more efficacious among the assistive displays compared to
a 2-D display.

2 RELATEDWORK
2.1 Human Physiology, Task Performance, and

Cognitive Workload
Mixed reality has immense potential as assistive technology in
HRC by providing users with helpful information when needed,
and previous research has shown that guidance and holographic
information can lead to better performance results and augment
the HRC [3, 13, 33, 50, 52, 53, 59]. However, the effect of MR on
cognitive workload and task performance is unclear as researchers
have mixed findings of using AR to present information to a user.
Some suggest that AR positively affects cognitive workload and
task performance [14, 44, 69, 75]. Whereas some show evidence
of cognitive overload using MR. Although the findings from these
studies offer important insights, one primary limitation is that all
these studies relied solely on subjective feedback (i.e., NASA TLX,
NASA RTLX, surgical TLX) to measure cognitive workload. While
subjective perceptions of cognitive workload are valuable, it also
leads to many challenges since they cannot be objectively compared.
Moreover, in most studies, operators often report their cognitive
workload at the end of the task, which fails to capture the cognitive
load in real time while performing a task.

Physiological parameters can serve as reliable, objective indica-
tors of cognitive workload [8, 11, 32]. These can be represented as
a function of the autonomic nervous system (ANS). The ANS con-
sists of two major systems: the sympathetic and parasympathetic
systems [49, 60]. The most commonly assessed indices of ANS are
based on cardiovascular activity, specifically, the frequency domain
metric of HRV. The low frequency (LF) band is considered a reflec-
tion of both sympathetic and parasympathetic activities with vagal
modulation, while the high frequency (HF) band is regarded as an
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indicator of parasympathetic activity. The LF/HF ratio is commonly
used to represent the sympathovagal balance [17, 26, 35, 80]. Higher
LF/HF values indicate sympathetic activity dominance, while lower
LF/HF values suggest a shift towards parasympathetic activity
dominance [17, 26, 35, 80]. While investigating HRC, the cogni-
tive workload can be recognized using LF/HF ratio by observing
differences in cognitive state. However, it should be noted that
there is scientifically no way to distinguish which factor among
arousal/stress/cognitive load contributes to the LF/HF ratio because
of the overlap (similarities) of these factors in how it affects human
physiology.

Additionally, the monitoring of cognitive workload allows for
the measurement of the cognitive cost associated with tasks and the
prediction of operator performance. Prior research has shown that
both underloading and overloading the brain may have a detrimen-
tal effect on human performance [4, 30, 36, 51, 86]. According to
Wickens’ multiple resource theory, humans have a limited amount
of cognitive resources to dedicate to a task, and when the task at
hand exceeds the available resources, it leads to inefficiency and
deteriorates performance [79]. On the other hand, when a task
requires fewer resources, it can distract users from the primary
task leading to a lack of vigilance and resulting in a subpar perfor-
mance [86]. Objective responses, rooted in established theories like
Wickens’ multiple resource theory, offer quantifiable indicators of
cognitive resource allocation. In dynamically changing conditions
such as HRC, these objective performance measures serve as con-
tinuous and reliable markers to ensure optimal task distribution,
preventing both underloading and overloading scenarios that can
compromise efficiency and safety. By systematically monitoring
cognitive workload and correlating it with objective performance
measures, such as task completion time and accuracy, the study
provides a comprehensive and data-driven insight into the intricate
interplay between human cognition and robot collaboration.

2.2 Trust
Developing intuitive user interfaces that facilitate natural and ef-
ficient interactions between humans and robots is vital for effec-
tive task completion, performance, and cognitive load manage-
ment [28, 76]. Trust in a user interface is important in ensuring
that humans can effectively collaborate with robots [9, 73]. Trust
is based on the perceived usability, dependability, and safety of
the interface, and it is crucial to the success of HRC. Therefore,
there is a need to create user interfaces that not only improve task
performance and cognitive workload management but also inspire
trust and confidence in HRC. Previous research has shown a strong
correlation between the amount of trust in human-robot teammates
and their performance, as well as an effect on the quality of their
interactions [15, 46]. High levels of trust between human-robot
can lead to increased collaboration and better performance and
decision-making [82]. On the other hand, a low degree of trust
among human-robot teammates can lead to decreased efficiency
and can negatively affect the user’s perception of the robot, resulting
in negative attitudes towards the robot and decreased willingness
to collaborate [82]. Although these findings provide insights re-
garding trust and performance in HRC, there are no current studies
that explore trust in using a user interface as an assistive tool to

complete a human-robot task. However, there is evidence that a
user interface that is intuitive and user-friendly can provide clear
and concise instructions and therefore ensure effective HRC. In
this study, we will investigate how the user interface influences the
operator’s trust under cognitive workload levels in order to provide
insight into more robust HRC designs.

2.3 Situation Awareness
Another critical factor in HRC is situational awareness, as it en-
ables humans and robots to make informed decisions and adapt to
changing circumstances [25]. Developing an effective user interface
is pivotal in supporting situation awareness in HRC [67, 72]. How-
ever, the effectiveness of user interfaces in supporting situation
awareness during HRC depends on several factors, including the
complexity of the task, the cognitive workload, and the level of
trust between humans and robots. Cognitive load and trust signifi-
cantly impact an individual’s ability to maintain situational aware-
ness [67, 72]. Specifically, a high cognitive load and low trust would
lead to low situational awareness as their attentional resources are
limited [21]. Additionally, in cases where humans are required to
perform multiple tasks simultaneously or when tasks are highly
complex, their cognitive workload increases, leading to a reduced
capacity to monitor and comprehend the situation [22, 24, 55, 68].
However, other studies suggest that effective UIs can reduce cogni-
tive workload and increase trust, situational awareness, and task
performance [14, 44, 69, 75]. For instance, using mixed reality in-
terfaces can provide humans with a more intuitive and immersive
way to interact with robots and their surroundings, improving their
situational awareness. Therefore it is essential to understand the
impact of the user interface on situation awareness and the inter-
connections with the cognitive workload in order to create more
efficient and safer HRC designs.

3 METHODS
3.1 Participants
The participants in this study consisted of fifteen college students
(7 male and 8 female), and their age distribution of 26.20 ± 6.41
years. Every individual who took part in the study was required
to sign a consent form, and their participation was contingent on
adhering to the guidelines established by the University’s Institu-
tional Review Board and referenced by the IRBNO: AK090821. The
participants reported their experience with industrial robots and
joysticks. None of the participants reported prior experience with
industrial robots. Additionally, the average participant reported a
slight familiarity with joystick devices which were utilized by the
participant to control the robot. There were no dropouts in this
study, and participants were compensated with a $25 Amazon gift
card for their time.

3.2 Collaborative Task
In this study, a human operator used a joystick to control a UR3e
(Universal Robots, DK) collaborative robot (cobot) to pick up objects
from a surface and place them in a bin (Figure 1). The robot’s speed
was set using a scaling factor that regulates the linear speed of
the end-effector. During this task, the participants navigated the
robot gripper to pick the objects (see Figure 1) and drop these into
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a bin. Objects of different colors and shapes were used and the
participants received instructions regarding the object that they
will have to pick up from an external screen before each trial.

External Screen


UR3e Robot

Pick and
Place Objects


Peripheral
Detection Device


Joystick
Control


Peripheral
Detection Switch


Figure 1: Experimental setup of HRC with the UR3 robot for
a pick-and-place task.

3.3 Procedure
This study included two major independent variables – cognitive
workload (i.e., low, high), and user interface (i.e., no interface, dis-
play, mixed reality – as well as three classes of dependent vari-
ables – task performance, subjective responses, and physiological
responses. The participants attended two sessions, where each ses-
sion focused on one level of the cognitive workload variable (i.e.,
low, high, Figure 2). At the beginning of each session we collected
the baseline data, which included physiological data, to ensure that
across the different days of the experiment, the participants started
with the same baseline. Within each session the low cognitive work-
load (LCW) and high cognitive workload (HCW), the participants
underwent three sub-sessions where they performed the task with
and without visual assistance provided through a user interface. In
the first sub-session, the participants performed the task without
using a user interface (no UI). In the next sub-session participants
were assisted during the task using a UI that provided location
information to an external screen that shows a top-down camera
view of the objects (display UI Figure 3). The UI was specifically
designed to offer visual assistance for pick-and-place tasks, aiding
participants in locating objects and achieving optimal gripping. A
single display, positioned to the right of the user was utilized for
this purpose. To ensure ergonomic comfort, the screen providing
vision assistance is positioned at the height of the operator rather
than on top of the robot. This placement allows for optimal viewing
and interaction, enhancing the user’s experience. Finally, in the last
sub-session, the participants performed the task wearing the MR
headset (Microsoft Hololens 2) that shows a top-down camera view
of the object (mixed reality UI, Figure 3). Cognitive workload and
assistance were counterbalanced and all participants performed all
experimental conditions. Counterbalancing was used to address the
effects of task experience and the order of cognitive workload states.
We adopted a Latin square design approach to ensure that each
condition occurs equally often in each possible position throughout
the experiment. The participants completed 16 trials of the task in
each sub-session.
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Figure 2: Study Protocol.

A B

Camera

A B

C

Figure 3: User Interface in 2-D or 3-D Display. View of the
camera from the home location of the robot (A). Closer view
before the pick up of the object (B), and after pick up (C).

3.4 Cognitive Workload Manipulation
The cognitive workload was manipulated by adding visual sec-
ondary tasks. The participants were asked to perform two tasks
simultaneously. The primary task was the task of interest (bin
picking), and a secondary task is performed alongside the primary
task. For the secondary task, We utilized the Peripheral Detection
Task (PDT) (Van Winsum et al., 1999) where a LED light, mounted
on a headband in front of the participant, was shown every three to
five seconds. The participants had a small switch attached to their
index finger, which they had to press every time they saw the LED
light. If a reaction was not detected within two seconds from the
onset of the stimulus, this was coded as a missed signal (after two
seconds the light turned off).

3.5 Dependent Measurements
3.5.1 Primary Task Performance. Trajectories of each individual
pick-and-place object were recorded at a frequency of 100 Hz. The
data provide the precise location of the six angles of the robot. At
the end of each trial, this information is saved in a .csv format,
resulting in one .csv file per trial. Task performance was quantified
using two different measurements: travel time (time in seconds to
pick-and-place the objects in each trial) and travel distance (distance
in meters covered from the home location of the robot until the
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dropping point). All the participants completed the pick-and-place
task successfully. Hence there were no binary errors.

3.5.2 Secondary Task Performance. Event detection and reaction
times were recorded during the secondary task. In each trial, we
calculated the number of detected signals and the reaction time of
each detected signal (time to respond to stimuli in seconds).

3.5.3 Subjective Responses. After each session, the participants
completed the situation awareness rating technique (SART) to mea-
sure SA and the NASA task load index questionnaire (NASA TLX)
to quantify workload. SART consists of three subscales: attentional
supply, attentional demand, and understanding of the task. The
SART composite score was calculated as understanding (demand-
supply). The NASA TLX is a multidimensional assessment tool
consisting of six subjective subscales from very high to very low
in terms of their: mental demand, physical demand, temporal de-
mand, effort, performance, and frustration. The questionnaire was
further analyzed by its subscales and composite scores. The overall
workload is calculated by averaging the score of the six subscales.
At the start of the experiment, participants were asked to complete
the propensity to trust questionnaire (Jessup et al., 2019) to capture
their tendency to trust in general. The propensity to trust question-
naire consists of six questions rated on a 1 (low) to 7 (high) scale.
The composite score is calculated as an average of all questions
(after inverting negatively framed questions). At the end of each
assistance sub-session (i.e., Display, Hololens), the participants com-
pleted the trust in automation questionnaire (TRUST) by Jian et al.
(2000) adapted to Display and Hololens. The TRUST survey quan-
tifies active trust perceptions based on the condition. The TRUST
questionnaire consists of 12 questions rated on a scale from 1 (low)
to 7 (high), with the composite score calculated as an average of all
questions (after inverting negatively framed questions).

3.5.4 Heart Rate Variability Response. HRV responses were col-
lected using the clinically validated Biopac® MP160 system. The
ECG and respiration signals were collected at a sampling rate of
1000 Hz. Post-data collection, the first step was to remove the arti-
facts from the physiological data. To remove the artifacts from the
physiological data, we first visualized the HRV data, any ectopic
beats or motion artifacts were interpolated using Biopac AcqKnowl-
edge. In this study, we applied Wavelet Transform to scale the de-
composed ECG signal into different frequency band signals. After
eliminating the noises, the ECG signal was reconstructed with the
original signal’s useful parts [1].

3.6 Statistical Analysis
Statistical significance was determined through repeated measures
analysis of variance (RM ANOVA) tests on dependent responses,
with significance reported at 𝛼 = 0.05 and marginal significance at
0.05 < 𝛼 < 0.1. The normality of the data was determined using a
Q-Q plot. Equality of variances was verified using Levene’s test and
using boxplots. Independence was assured by our counterbalanced
design. The RM ANOVAs were separately run on each task per-
formance metric to test the effects of cognitive workload (i.e., low,
high) and user interface (i.e., no UI, display UI, mixed reality UI).
Separate RM ANOVAs were performed on all subjective responses
to test the effects of cognitive workload (i.e., low, high) and user

interface (i.e., no UI, display UI, mixed reality UI). Furthermore,
separate RM ANOVAs were run on all secondary task performance
metrics to test the effects of cognitive workload (i.e., low, high)
and user interface (i.e., no UI, display UI, mixed reality UI). Finally,
a non-parametric test (Friedman’s test) was performed on LF/HF
ratio to test the effects of cognitive workload (i.e., low, high) and
user interface (i.e., no UI, display UI, mixed reality UI). Post hoc
comparisons were performed where needed using Tukey HSD.

4 RESULTS
4.1 Primary Task Performance Metrics
4.1.1 Travel Time. The overall travel time of the pick-and-place
task was significantly impacted by cognitive workload (p = 0.01,
𝜂2 = 0.05, Figure 4), where participants had higher travel times in
HCW at (32.03 ± 16.33) compared to LCW at (30.03 ± 13.21). The
user interface significantly impacted the travel time (p < 0.01, 𝜂2 =
0.09), where overall time was faster without an interface (29.65 ±
15.38) compared to display UI (30.75 ± 13.46) and MR UI (32.97.64 ±
15.30). There was an interaction effect between cognitive workload
and interface (p = 0.03, 𝜂2 = 0.03). Travel times were faster in low
cognitive workload and no interface (27.15 ± 10.83) session com-
pared to high cognitive workload and the use of interfaces in both
high and low cognitive workload.
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Figure 4: Effects of cognitive workload and User Interface on
travel time.

4.1.2 Travel Distance. Two-waymarginal interactionwas observed
between cognitive workload and interface (p = 0.03, 𝜂2 = 0.04, Fig-
ure 5). Travel distance was higher in high cognitive workload when
using the mixed reality UI compared to display UI and no UI in
both low and high cognitive workload; however, no pairwise t-tests
were significant after Tukey HSD Method.

No Interface Display Hololens
Interfaces

0.8

0.9

1.0

1.1

1.2

Tr
av

el
 D

ist
an

ce
 (m

et
er

s)

LCW
HCW

Figure 5: Effects of cognitive workload and User Interface on
travel distance.
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4.2 Secondary Task Performance
4.2.1 Missed Signals. There was no statistically significant differ-
ence (all p > 0.05) between the no UI, display UI, and mixed reality
UI. However, we observed a slight decrease in missed signals when
comparing the no UI (71.90 ± 44.60 ) with display UI (64.26 ± 42.61)
and mixed reality UI (65.82 ± 38.81).

4.2.2 Response Time. All main effects and interactions were sta-
tistically identical (all p > 0.05) across the interfaces. There was a
small increase in the response time when comparing the no UI (0.69
± 0.12 ) with display UI (0.70 ± 0.13) and mixed reality UI (0.72 ±
0.10).

4.3 Physiological Data - LF/HF Ratio
All main effects and interactions were statistically identical (all
p > 0.05). However, we observed a slight increase in LF/HF ratio
during the HCW session (5.93 ± 5.71) compared to LCW (6.10 ±
6.79), which is an indicator of increased cognitive workload.

4.4 Subjective Responses- NASA-TLX
4.4.1 Composite Score. Cognitive workload affected overall work-
load score (p < 0.01, 𝜂2 = 0.07) where LCW (24.35 ± 13.23) was rated
with lower overall scores than HCW (45.69 ± 20.09, Figure 6). No
other effects were observed (all p > 0.466).
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Figure 6: Effects of cognitive workload and User Interface on
overall cognitive workload perception.

4.4.2 Mental Demand. Cognitive workload significantly affected
the mental demand subscale (p < 0.01,𝜂2 = 0.11) with lower mental
demand in LCW (30.71 ± 17.70) than in HCW (62.24 ± 24.11).

4.4.3 Physical Demand. Cognitive workload significantly affected
the physical demand subscale (p = 0.01, 𝜂2 = 0.09) with higher
physical demand in HCW (32.53 ± 26.67) than LCW (20.22 ± 19.25).

4.4.4 Temporal Demand. There was a significant effect of cogni-
tive workload on temporal demand (p = <0.01, 𝜂2 = 0.12) where
high cognitive workload resulted in higher temporal demand in
HCW (49.87 ± 26.30) than LCW (22.42 ± 12.08).

4.4.5 Performance. Cognitive workload (p = 0.01, 𝜂2 = 0.07) had a
significant effect on perceived performance, where participants felt
they performed better in LCW (41.37 ± 25.25) than in HCW (33.04
± 31.35).

4.4.6 Effort. The cognitive workload had a significant effect (p
<0.01, 𝜂2 = 0.06), with more effort required for HCW at (52.80 ±
26.37) than low at (26.16 ± 16.88).

4.4.7 Frustration. There was a significant effect of cognitive work-
load on frustration (p = <0.01, 𝜂2 = 0.08 ), where high cognitive
workload resulted in more frustration in HCW (35.29 ± 26.65) than
LCW (13.42 ± 12.24).

4.5 Subjective Responses - Situational
Awareness

4.5.1 Composite Score. Cognitive workload (p < 0.01, 𝜂2 = 0.04)
influenced the composite score for SART where lower situation
awareness was associated with HCW (13.83± 4.36) than LCW (18.02
± 3.96, Figure 7). No other effects were observed (all p > 0.586).
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Figure 7: Effects of cognitive Workload and User Interface
on Situational Awareness.

4.5.2 Attention Demand Subscale. There was a significant effect
of cognitive workload on attention demand (p = <0.01, 𝜂2 = 0.03),
where high cognitive workload resulted in more attention demand
in HCW (10.91 ± 4.19) than LCW (6.43 ± 2.11).

4.5.3 Attention Supply Subscale. There was a marginal effect of
cognitive workload on attention demand (p = 0.07, 𝜂2 = 0.06), where
high cognitive workload resulted in more supply demand in HCW
(16.78 ± 3.13) than LCW (15.57 ± 3.49).

4.5.4 Understanding Subscale. Cognitive workload (p =0.09, 𝜂2 =
0.03) influenced the understanding, where lower understanding
was observed with HCW (7.96 ± 2.47) than LCW (8.89 ± 2.21).

4.6 Subjective - Trust
All main effects and interactions were statistically identical (all p >
0.218, 𝜂2 = 0.01). However, we observed a decrease in trust during
the HCW (4.28 ± 1.18) session using both interfaces compared to
LCW (4.65 ± 1.07), with the lowest decrease to be noticed using the
mixed reality UI (3.96) during the HCW session.

5 DISCUSSION
Three key takeaways of this study are:

(1) High cognitive workload and User Interfaces decreased task
efficiency (i.e., travel time) and accuracy (i.e., travel distance).

(2) Cognitive workload impacted situational awareness where
participants perceived more attention- and supply-demand
during the HCW session. The effects of cognitive workload
were captured at all the subscales of NASA TLX, where
participants perceived the task as more difficult during the
HCW session.

(3) Cognitive workload impacted physiological data where an
increase in LF/HF ratio was observed during the HCW.
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5.1 High Cognitive Workload and User
Interfaces decrease Task Performance

In this study, we observed that the high cognitive workload task re-
quired higher travel times to complete the task compared to the low
cognitive workload task. This is in line with literature, which has
noted that task demand dictates the overall impact on the perfor-
mance of a human operator in a collaborative task [4, 30, 36, 51, 86].
Additionally, we observed that the user interfaces, especially the
mixed reality UI, had a negative impact on task performance dur-
ing high cognitive workload tasks where both travel distance and
travel time were highest compared to all other scenarios. This find-
ing suggests that UI is also a significant factor (positive/negative
impact) influencing performance along with cognitive workload.
Specifically, the lowest traveled time was observed in the low cog-
nitive workload state without UI assistance, and the highest travel
time was observed in the high cognitive workload state with mixed
reality UI. The operator had no control over the robot’s velocity as
the robot moved in response to stepwise binary (on/off) joystick
inputs. Hence, the change in speed directly indicates the continuity
of joystick inputs as influenced by human behavior. As a result,
high levels of cognitive and the use of a user interface increased the
accumulation of stuttering over relatively longer trials. The main
effect was also found in travel distance, where longer trials were
observed in the high cognitive workload session while using mixed
reality UI. Further, it was observed that the mixed reality UI’s assis-
tance in the high cognitive workload state led to the longest travel
distances suggesting a not optimal trajectory path because of task
difficulty and the inherent complexity of mixed reality technology.

This negative impact on both task performance aligns with the
findings of previous research where the cognitive workload is a
significant factor influencing human performance [4, 30, 36, 51,
86].Additionally, prior studies have shown a negative impact on task
performance while using user interfaces in HRC [4, 30, 36, 51, 86].
Research has shown that user interfaces can increase the cognitive
workload required to complete tasks, leading to decreased task
efficiency and accuracy [4, 30, 36, 51, 86].

Therefore, it is important for robot operators who complete
tasks that require a high level of mental effort to receive support to
mitigate the negative effects of cognitive workload on their overall
performance. Additionally, it is vital for designers to keep these
factors in mind when creating interfaces to ensure that users can
complete tasks quickly and accurately without becoming mentally
fatigued. Finally, it should be noted that the 2-D display interfaces
allowed for better or comparable task performance during high and
low cognitive tasks compared to no interface scenario suggesting
that future MR systems that are less cumbersome and cognitively
demanding could improve HRC.

5.2 Effects of Cognitive Workload and User
Interfaces on Subjective Responses

5.2.1 Impact of Cognitive Workload and User Interfaces on cognitive
workload perceptions in HRC. The results collected using NASA
TLX indicate that cognitive workload had a significant effect on
perceived workload across all user interfaces, with a higher work-
load reported during the high cognitive load task. However, it is
important to notice that irrespective of the cognitive demand of the

task (High vs. Low), participants consistently reported the highest
NASA TLX scores while using the mixed reality UI. This clearly
indicates that the participants perceived the mixed reality UI to add
additional workload, despite anecdotally it being the most preferred
interface. Further, we observed that responses to all NASA TLX
subscales showed significant differences between the groups (No
interface, displays UI, and mixed reality UI) except for performance,
where participants always rated their perceived performance higher.
In high cognitive workload sessions, participants reported that the
mixed reality UI would provide the best performance, despite the
fact that the actual task performance decreased during the mixed re-
ality UI sessions. This suggests that perceived workload and actual
performance may not always align in high cognitive workload sce-
narios. In low cognitive workload scenarios, participants believed
that the display UI would lead to the best performance, again with-
out alignment with actual performance metrics. However, there
were no significant differences between the no UI and display UI
groups in low cognitive workload sessions, indicating that adding a
user interface did not significantly impact task performance in low
cognitive workload scenarios. The study highlights the importance
of considering both subjective and objective measures to evaluate
task performance during HRC, irrespective of the cognitive load
associated with the task. Our findings in the high cognitive demand
task clearly indicate that while participants may perceive certain in-
terfaces as less demanding and enhance their performance, this may
not always align with actual task performance. As such, designers
and researchers must consider perceived workload and objective
performance metrics when evaluating user interface designs in
high cognitive workload scenarios.

5.2.2 The impact of cognitive workload and User Interface in Situa-
tional Awareness in HRC. In HRC, situational awareness is a critical
component for effective communication and decision-making. In
this research, we observed that participants reported a lower SA dur-
ing the high cognitive workload session, irrespective of whether an
interface was used. This observation aligns and adds to the current
body of work where studies have reported high cognitive workload
can lead to increased attention and reduced SA [77]. Additionally,
among the high cognitive workload session, we observed that the
lowest SA was reported when using the mixed reality UI in a high
cognitive load setting. This suggests that high cognitive workload
scenarios with immersive interfaces may negatively impact SA in
HRC scenarios. However, this observation could also be because of
the participant’s unfamiliarity with MR devices, thus demanding
more attention from users than displays UIs and no interface sce-
narios. Future studies should consider involving participants with
prior MR experience or pursue a longitudinal study to identify the
root cause of this observation. Responses from the SART subscales
showed that the supply and understanding subscales did not show
significant differences between interfaces and no interfaces group,
indicating that participants perceived the interfaces to provide ad-
equate information and could understand the task requirements.
However, participants reported requiring higher attention demand
in the mixed reality UI. Again, this observation can be because of
the participants’ lack of experience with MR systems calling for
further investigation in this direction. Irrespective of the root cause
driving the observation, the results indicate that it is important
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to consider the context of the task, the interface design, and the
impact of cognitive workload on SA while using an assistive tool
in HRC.

5.2.3 Trust in User Interfaces under low and high cognitive work-
load. Trust is a critical factor that affects task performance and
decision-making in complex environments, including HRC, which
is strongly influenced by cognitive load [9, 73]. In this study, we
observed that participants reported lower levels of trust under a
high cognitive load, with the lowest trust scores when using the
mixed reality UI in the high cognitive workload state. This is con-
sistent with prior research demonstrating that a high cognitive
workload can reduce trust and reliance on automation in compli-
cated systems [82]. Due to their high cognitive demands, immersive
interfaces, such as mixed reality, may negatively influence trust
under these circumstances. It is critical to emphasize the influence
of cognitive workload on trust in complex systems, particularly
in HRC settings. The findings of this study show that high cog-
nitive workload situations, especially those employing immersive
interfaces, may negatively influence trust during HRC. Hence, it is
essential for designers and researchers to consider the impact of
cognitive workload on trust to mitigate the detrimental impact it
may have on trust during HRC scenarios when a user interface is
utilized.

5.3 LF/HF ratio increased during the high
cognitive workload session

We collected the physiological data of participants during an HRC
task and observed an increase in the LF/HF ratio, suggesting a
higher cognitive workload among the participants [17, 26, 35, 80].
However, we did not observe significant differences between the
two sessions or across different interfaces. The lack of a signif-
icant difference in the data obtained could be attributed to the
participants’ effort level, where participants might not have put
the same effort in different sessions. However, this effort is not
captured in their subjective cognitive workload perception and task
performance, where the results indicated higher levels of cognitive
workload. Another possible explanation is the 30-second break be-
tween the pick-and-place trials. This break was provided to bring
the robotic arm to a home location so all participants could start
the pick-and-place task from the same location. However, this data
(break) was included for analysis instead of focusing on data per
trial. This approach was adopted to capture a more comprehensive
assessment of the participant’s physiological responses, given that
the time window per trial ( 50 seconds) is insufficient for HRV anal-
ysis based on literature and our prior works [34]. Finally, the lack
of a significant difference in the data obtained could be attributed
to individual differences among the participants, such as gender
and age, that might have influenced physiological responses to the
HRC task [37, 39].

5.4 Study Limitations
While this study provided valuable insights into the interplay of
cognitive workload and user interfaces on task performance, trust,
and situational awareness during HRC, this research has a few limi-
tations. One of the primary limitations is the number of participants
in the study, and the participants recruited in this studywere college

students pursuing advanced degrees. Future efforts should focus
on recruiting industry assembly line employees, as most are high
school graduates. Additionally, efforts should be made to ensure
that the participant pool includes a diverse sample of varying ages,
including adults, older adults, and younger individuals. This study
is also limited by the fact that none of the participants had prior
experience with MR. Therefore, this novel technology may have
demanded additional mental effort from participants to compre-
hend and complete the task. Future research should investigate the
time-on-task effect, examining the learning effect based on earlier
and later MR UI usage trials. Another limitation lies in the analysis
of the physiological activity and, more specifically, the LF/HF ratio.
The total session window was used for the analysis, which included
the small break between the trials. This approach was the most
suitable for analyzing these data since the HRV analysis requires at
least five minutes of data for analysis, and each trial lasts approxi-
mately 50 seconds. Future studies should consider using additional
physiological metrics such as pupillometry along with HRV. Finally,
another limitation is that while affective states impact cognitive
load, we focused on how UI could impact cognitive load and task
performance in this study. This was intentional to not overburden
the participants with surveys and experiments that collected af-
fective states. With these limitations, the findings from this study
can still provide researchers with a foundational background and
information that should be considered.

6 CONCLUSION AND FUTUREWORK
This study focused on developing and evaluating the impact of
User interfaces as assistive technology in HRC. Specifically, 2-D
and mixed reality user interfaces were developed and utilized dur-
ing human-robot collaborative tasks to understand their effect on
cognitive workload, task performance, situation awareness, and
participants’ trust. Our findings indicate that, irrespective of the
use of interfaces, high cognitive workload scenarios reduced task
performance, situational awareness, and trust and increased the
users’ cognitive load. In investigating the impact of user interfaces,
mixed reality UI during high cognitive workload scenarios reduced
task performance, situational awareness, and trust. These findings
suggest that MR interfaces can potentially negatively impact cogni-
tively demanding tasks and complex scenarios rather than being an
effective assistive technology. However, these observations could
be because of the current cumbersome design of MR systems avail-
able on the market or the participants’ lack of experience with the
MR systems. Future research should try to involve participants
with more MR experience or potentially conduct a longitudinal
study with multiple interventions to understand the novelty effect
of MR systems. Finally, our findings clearly show the importance of
including a combination of subjective and objective performance
metrics for the evaluation of the system. We highly recommend
that future studies consider this to understand and enhance the
HRC experience.
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