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Abstract—Assessing multi-hop interpersonal trust in online
social networks (OSNs) is critical for many social network
applications such as online marketing but challenging due to
the difficulties of handling complex OSNs topology, in existing
models such as subjective logic, and the lack of effective validation
methods. To address these challenges, we for the first time
properly define trust propagation and combination in arbitrary
OSN topologies by proposing 3VSL (Three-Valued Subjective
Logic). The 3VSL distinguishes the posteriori and priori uncer-
tainties existing in trust, and the difference between distorting
and original opinions, thus be able to compute multi-hop trusts
in arbitrary graphs. We theoretically proved the capability based
on the Dirichlet distribution. Furthermore, an online survey
system is implemented to collect interpersonal trust data and
validate the correctness and accuracy of 3VSL in real world. Both
experimental and numerical results show that 3VSL is accurate
in computing interpersonal trust in OSNs.

Index Terms—Interpersonal trust, trust establishment, online
social networks, three-valued subjective logic, Dirichlet distribu-
tion

I. INTRODUCTION

With the emergence of Online Social Networks (OSNs),
user-generated content and interactions have dominated web
activity and the questions of whom and what to trust have
become increasingly important. Trust assessment in OSNs
can be applied in various domains such as online market-
ing, proactive friendships construction [25], and networking
security [12], [14], [16], [17], [19], [23], [24]. Various online
trust models have been developed but one thing missing from
them is that they do not have an interpersonal trust component,
which widely exists in real world. Therefore, this paper tries to
answer a fundamental question: how to accurately model and
compute the multi-hop interpersonal trust between two users
connected within OSNs?

Trust can be defined in different ways such as rating-based
reputation in online marketing and local search applications,
preferences in recommendation systems, and probability of
being a normal node in network security analysis. We de-
fine interpersonal trust as the probability that a trustee will
behave as expected by a trustor. This general definition of
interpersonal trust makes it applicable for a wide range of
applications. We also assume trustworthiness is determined by
objective evidences, i.e. the cognitive features of trust are not
our concern [2], [6]. Subjective logic models trust as a tuple
in the form of (belief, distrust, uncertainty) and is widely
used in assessing multi-hop interpersonal trust [9]. However,

it can only handle series-parallel social network topology, i.e.
complex trust topology need to be simplified by removing
or selecting edges. Such simplification will result information
loss, which is confirmed in our numerical analysis.

To cope with arbitrary topology in OSNs, we propose
the 3VSL (Three-Valued Subjective Logic), developed from
subjective logic, as a solution for assessing multi-hop inter-
personal trust in OSNs. Unlike subjective logic, we define
interpersonal trust as trinary event (belief, distrust, neutral)
instead of binary event (belief, distrust), hence extend Beta dis-
tribution to Dirichlet distribution. Neutral state expresses the
posteriori uncertainty in trust generated by trust propagation,
which is ignored in subjective logic. The introduction of neural
state makes operations in 3VSL different from subjective logic.
More importantly, it completes the underlying theory of 3VSL.
Leveraging on this new definition, operations (discounting and
combining) on trust are redesigned in 3VSL. Furthermore, a
solution for applying 3VSL to assess trust in arbitrary social
network graph is given and proved to be correct. To the best of
our knowledge, 3VSL is the first model to compute multi-hop
interpersonal trust in arbitrary network topology.

Also, we implement an online survey system to collect inter-
personal trust data. 100 participants are invited to evaluate the
trustworthiness of their 1st and 2nd hop friends by filling out
a questionnaire designed for measuring interpersonal trust [8].
In addition, we conduct a numerical analysis to show the
features of 3VSL. Experimental and numerical results indicate
that 3VSL is accurate in assessing interpersonal trust.

Major contributions of this paper are as follows:

1. The shortcomings of subjective logic-based approaches
are identified and addressed in the 3VSL model. 3VSL dis-
tinguishes the priori and posteriori uncertainties, the distort-
ing and original opinions, and redefine the discounting and
combining operations on opinions. 3VSL is proved to be able
to assess multi-hop interpersonal trust in arbitrary network
topology.

2. The 3VSL model is validated by the interpersonal trust
data collected from 100 participants. To the best of our
knowledge, this is the first established dataset for assessing
interpersonal trust in real-life multi-hop social networks.

The rest of this paper is organized as follows: In sections II
and III, we introduce related work and the problem statement.
In section IV, we present details of 3VSL. In sections V
and VI, we validate 3VSL through experimental and numerical



analysis. A conclusion will be given in section VII.

II. RELATED WORK

Many previous efforts have been devoted to the study of
using probability distribution to express and model trust in a
computational way. In probability distribution-based methods,
trust is defined as a probability distribution of a certain event.
For example, Beta distribution [9] is used to model binary
discrete random variables, i.e. whether a person is trustworthy
or not. In [1], [18], Gaussian distribution is proposed to handle
the situation when possible outcomes are continuous random
variables. Beta distribution is then expanded to the Dirichlet
distribution to handle multiple discrete random variables [3].
Probability distributions are often associated with Bayesian
analysis [1], [15], [18] so that they can model trust by inte-
grating information from various sources such as reputations,
preference and group behaviors.

Based on Beta distribution, Josang, etc. proposed subjective
logic [9] to assess interpersonal trust in multi-hop trust graph
through trust propagation and fusion among people who do
not have direct social connections. In [10], [11], how to apply
subjective logic in trust graph is studied. Subsequently, it is
redefined in [13], [20]-[22] and the accuracy of trust estima-
tion is improved. In [5], the authors introduce the selection
operation which selects the strongest path to compute multi-
hop trust when several trust paths exists in social networks.
In [26], trust information computed by subjective logic is used
in the routing domain.

Nevertheless, all previous work are not able to correctly
define how interpersonal trust changes during trust propaga-
tion. Due to this issue, subjective logic cannot handle complex
topology in social networks. Unlike subjective logic, 3VSL
considers certain evidences are distorted and transferred into
the neural state when trust propagates from one person to
another. As a complementary of one-hop trust estimation, we
believe 3VSL is an improvement to the framework of social
trust computation.

III. SYSTEM MODEL AND PROBLEM STATEMENT

A trust social network is modeled as a directed graph
G(V, E) where a vertex u € V represents a person, and an
edge e(u,v) € E denotes how much w trusts v (from his/her
direct interaction experience). Each edge is expressed as an
opinion, which means v’s trustworthiness to u.

In a social network, two edges are in series if they are
incident to a vertex of degree 2 and are parallel if they join
the same pair of distinct vertices. As shown in Fig. 1(a) and
Fig. 1(b), two users can be simply connected in a serial
topology or parallel topology. They can also be connected in
a bridge topology (in Fig. 1(c)), where the connection from A
to C' cannot be decomposed into series and parallel topologies.

To apply subjective logic, the graph between two users
must be a directed series-parallel graph, i.e. subjective logic
only works on directed two-terminal series-parallel graphs
(DTTSPG) [7]. Since the bridge topology is not a DTTSPG,
it is unsolvable in subjective logic.

(b) (©
Fig. 1: Examples of serial, parallel and bridge topologies

In fact, the bridge (or even arbitrary) topology is solvable
in 3VSL by distinguishing the distorting opinion(AB) and
original opinion (DC'), which will be discussed in the fol-
lowing sections. Since bridge topology is common in social
networks, it is important to design a model to compute the
trustworthiness between users connected by a bridge or arbi-
trary topology without losing information by removing edges.
Formally, we define the problem of computing interpersonal
trust in social networks as follows:

Problem Statement

Given an arbitrary trust social network G(V, E), ¥V u and v
s.t. e(u,v) € FE and 3 at least one path from u to v, how to
compute the trustworthiness of v to u, i.e. how u should trust
a stranger v based on her existing social connections.

IV. THREE-VALUED SUBJECTIVE LOGIC

To compute interpersonal trust in any arbitrary topology,
we propose the Three-Valued Subjective Logic (3VSL) by
distinguishing 1) the priori and posteriori uncertainties, and
2) distorting and original opinions. In 3VSL, the trustworthi-
ness/opinion of a person is considered as an trinary event (true,
false, neutral). Neutral state, also called posteriori uncertainty,
keeps the the evidences distorted from certain spaces while
trust propagates from one person to another. Leveraging on
this new definition of trust, we redesign the discounting and
combining operations on opinions, and theoretically prove that
3VSL is capable to handle arbitrary network topology.

A. Subjective Logic

To better understand 3VSL, we first briefly introduce the
subjective logic [9]. Considering two users A and X, the
trustworthiness of X to A can be described by an opinion

vector wy:

wX = (b an“Xvaﬁ)

bX+dX+uX_1

where b%, d4, u§ and a4 refer to the belief, distrust, uncer-
tainty, and base rate. a’ is a constant formed from an existing
impression without solid evidences, e.g. prejudice, preference
and general opinion obtained from hearsay. For example, if A
always distrusts/trusts the persons from a certain group where

X belongs to, then a4 will be smaller/greater than 0.5. Based
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Fig. 2: Components of an opinion vector in 3VSL

on the Beta distribution, two opinions wy = (b1,d1,u1,a1)

and wy = (b2, da, ug, az) can be combined as follows:
bey — —b1Up + bouy
127wy Fug — uyus
_ _diug + dauy
u + Uz — UTUL
Ut = Ujug
127wy Fug — ugus
a2 = a

Let A and B be two persons where w§ = (b1,dy,u1,aq) is
A’s opinion about B’s trustworthiness, and let C' be another
person where wg = (bg,da, uz,as) is B’s opinion about C.
Then, subjective logic applies the discounting operation to

compute wé as follows.
b1z = by by
d12 - b1d2
uz =1 — b1z —dia2 —uy
a2 = a2

Finally, the expected belief of an opinion w4 is computed

by BE(wy) = by + uiay.
B. Opinion Vector in 3VSL

In 3VSL, an opinion vector w¥ is defined as:

WX = (b d)m”x,ex)\ax
by +dy +ng +ey =1

where b5, di, ns, es4 and ay refer to belief, distrust,

posteriori uncertainty, and priori uncertainty, and base rate.
b4, d5,n’ rtepresent the probabilities that X is trustworthy,
not trustworthy, and neutral, respectively. e4 represents priori
uncertainty (without evidences) of whether X is trustworthy,
not trustworthy, or neutral. Priori uncertainty exists due to the
lack of evidences, while posteriori uncertainty exists because
of evidence distortions. The definition of a’ is the same as
that in subjective logic and it keeps unchanged in 3VSL, for
simplicity we will not mention it unless necessary.

As shown in Fig 2, the certainty of an opinion comes from
b4 and d%, while uncertainty from n%§ and e4. For example,
if A has no interactions with X, then her opinion on the
trustworthiness of X is (0,0,0,1). Later on, if A receives 1,
2 and 4 evidences to support X is trustworthy, not trustworthy
and neutral, then w¥§ becomes (0.1,0.2,0.4,0.3). The details
of how to compute e will be shown in the following sections.
Compared to subjective logic, 3VSL further distinguishes the
uncertainty as priori and posteriori.

C. Dirichlet Distribution in 3VSL

To support mathematical operations on opinion vectors in
3VSL, we first define a mapping between the probability
density function representation and the opinion representation
by introducing a evidence space. As shown in Fig. 3, the

operations on opinions can be considered as the operations
on the Dirichlet distributions.

The Dirichlet distribution is a family of continuous mul-
tivariate probability distributions parametrized by a vector «
= (a1, ,ax). Its probability density function returns the
belief that the probabilities of K rival events are x; given that
each event has been observed «; — 1 times. Since evidences in
an opinion vector are in three possible states (belief, distrust,
neutral), we use a trinomial Dirichlet distribution:

e+ 8+7)

P Bl 520 = ) 8) - 1)
where (a, 8,7) is the controlling vector, Py, Py and P,
represents the probability distribution of belief, distrust, and
neutral events. Let r, s and o be the number of evidences
observed to support a person is trustworthy, not trustworthy,
and neutral, respectively. According to the definition of the
Dirichlet distribution, we have « = r + 1, 8 = s + 1, and
vy=o0+1.

Here we assume that a person already had one evidence
of each event (belief, distrust and neutral). The assumption is
reasonable because the Dirichlet distribution still works even
when no event is observed, i.e. (¢ = 1,8 =1,7v = 1) and
the probability of each event will be 1/3. These three priori
evidences are considered as a priori uncertainty.

According to the definition of w)A}, its four components can
be expressed as:

S —
X rts+to+3
dA— 5
X r+s+o0+3
A 0
= — 1
nx r+s+o0+3 M
ey = 3
X rts+to+3
where the amount of priori evidences is set as 3, and its ratio

to the number of observed evidences is e%.

Since the expected probability of each event in Eq. 1 is,

« r+1
a+pB+y r+s+o+3
s+1
E(Py) = i = 2
a+pB+y r+s+o+3
1
EQ—P—P)—-—2 . °F
a+08+y r+s+o+3
we have the following equations:
r+1 a1
EP)=———">-=0b
)= o T3
(Pa) r+s+o+3 X+3 ®)
o+1 a1 4
EFEl-P —-P)= —— = -
( b a) r+s+o0+3 nX+3eX

where the probability of each event is determined by certain
posterior evidences and priori evidences. So far we have
built the mapping between opinion model and the Dirichlet
distribution by introducing an evidence space (r, s, 0).

PP P



Eq. (2) Eq. (3)
—&D— L
Dirichlet Evidence Opinion
Distribution Vector

Fig. 3: Mapping between the opinion model and the Dirichlet
distribution

Although priori uncertainty in 3VSL is similar to u in
subjective logic, posteriori uncertainty is considered a parallel
state to distrust and belief. Posteriori uncertainty, belief and
distrust form trinary events, so Beta distribution in subjective
logic is extended to Dirichlet distribution in 3VSL.

D. Opinion Combining in 3VSL

In a parallel topology as shown in Fig. 1(b), opinions from
parallel paths should be combined or fused in a fair and equal
way so that the resulting opinion reflects all opinions. We first
introduce the theorem of combining two opinions and then
generalized it to support multiple opinions.

Theorem 1 Let w; = (b1,d1,m1,e1) and ws =
(ba,da,na,e3) be the opinions on two parallel paths
between two users, then the combining operation © (w1, ws)
is carried out as follows:

_ _eabj+eib
bia = el + ey — ec]leg

dio — ead; +e1ds
O(wi,ws) = 127 e f e —erer
ey — €211+ €e1n
2= el + €2~ €162
€12 = 1=2

€1+ ezx —ejez

PROOF According to the mapping relationship between opin-
ion model and Dirichlet distribution, w; and ws can be
represented as f(Py, Pylag, f1,71) and f(Py, Pylaz, B2, 72),
respectively. If posterior evidences are independent, these two
Dirichlet distributions can be aggregated into one distribution:

f(Py, Palon +ag — 1,51+ B2 — 1,1 +72—1)

It was shown that posteriori evidences from the same cate-
gory are accumulated except for the prior evidences. 3VSL
considers the priori uncertainty from different individuals as
identical. Then, the expected probability of belief event in the
aggregated distribution is:

o +as —1
E(P) = 4
() ittt htntn—3 P

ry+re+1

r1+reo+s1+sy+o01+02+3
Similarly, the expected probabilities of other events can be
computed. We can see the number of posteriori evidences of
each events are increased to 71 + 79, S1 + S92, and 01 + 0o.
However, the amount of priori evidences is still 3 and does
not change. 3VSL considered posteriori evidences of different
single hop opinions are independent while priori evidences are
dependent.

According to Eq. 1 and the definition of opinion vector, we
have:

T1
by = —m8M
rn+s1+o01+3
_ bl _ ibl
(1—e1)+er (1—61)%4-62
b
by — T2 2

T’2+82+02+3 B (1762)4’62
e1 and eo are different if vy + 51 + 01 # ro + So + 02, SO
we normalized them in the above equations. Combining these
two opinions yields:

%bl + b2 _
(]. — 61)% + (1 — 62) + ()
Similarly, the other components of resulting opinion can be
calculated as follows:

62b1 + €1b2
e1+ e —eje

b2 =

ead; + erds
dypg = ————
e1 +ex —erey
€any + €e1n9
ne=—""""—"—
e1 +e2 —ejeg
€2€2
€12 =

e1 +ex —eje;

[ |
According to Theorem 1, we could expect the combining op-
eration is both commutative and associative, i.e. ©(wy,ws) =
@(WQ, wl) and @(wl, @(wg, W3)) = @(@(wl, WQ), (.AJ3).

If there exist multiple parallel opinions wi,ws ---w, be-
tween two users, the overall opinion can be calculated as
O(0(0(w1,w2), ), wn). Since combining operation is com-
mutative and associative, the above equation can be simplified
as O(wy,ws, - - ‘wy, ). Compared to subjective logic, new oper-
ation rules on priori and posterior uncertainties are introduced
in 3VSL.

E. Opinion Discounting in 3VSL

The purpose of opinion discounting operation is to imple-
ment trust propagation along trust connections within a social
network. We first introduce how to discount one opinion from
another, and then generalize it to support multiple opinions.
Considering a simple case where A trusts B who trusts C, the
discounting operation allows A discounts B’s opinion over C'
to obtain her own opinion on C.

Definition 1 (Discounting Operation) Let A and B be two
persons where wé = (b1,d1,n1,e1) is A’s opinion about B’s
trustworthiness, and let C' be another person where wg =
(be,da,na,e3) is B’s opinion about C'. Then, the discounting
operation A(w4,wZ) is carried out as follows:

biz = b1b2

diz = bids

Alwp,wB) =

(w5 we) nig =1—bia —di2 — ez
€12 = €2

where A(wa,wE) is called the discounting of wZ by w3j,
expressing A’s opinion about C' as a result of B’s advice to

A.
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Fig. 4: Illustration of the discounting operation in 3VSL

Since A discounts B’s opinion (of C) to obtain her own
opinion upon C, some certain evidences from wZ will be
distorted since A does not absolutely trust B and his opinion.
The distorted evidences from r5 and sZ will be saved into
the posteriori uncertainty space of the resulting opinion wé.
However, the priori evidences will be kept unchanged. As
shown in Fig. 4, distorted evidences from belief and distrust
spaces are saved into the posteriori uncertainty space, resulting
the same amount of evidences.

Discounting operation is analogical to electromagnetic wave
propagation where original signal is distorted into a weak
one at the receiving side. Trust propagating from A to C
is considered as the opinion wc being distorted by oJB (in
the inverse direction). Since certain evidences from wf are
distorted and saved into the posteriori uncertainty space of
wé, wf and wh have the same amount of evidences.

Definition 2 (Distorting and Original Opinions) Given a
discounting operation A(w;,ws) on two opinions w; and wo,
we treat w; as the distorting opinion, and w, the original
opinion.

Since certain evidences from wsy are distorted by w; and
transferred into the posteriori uncertainty space of wo, the
evidence space of opinion A(wi,ws) is the same as ws’s.
Therefore, we can conclude the resulting opinion of a dis-
counting operation shares exactly the same evidence space
with the original opinion.

It is easy to prove that discounting operation is asso-
ciative but not commutative, i.e. A(wi,we) # A(wa,wi)
but A(A(w,ws),w3) = Awr, A(we,ws)). Given a serial
topology where opinions are ordered as wi,ws, - ,wy, the
final opinion can be calculated as A(A(A(wy,w2)," ), wn).
Since discounting operation is associative, this equation is
simplified as A(wy,ws, - wy).

Compared to subjective logic, posteriori uncertainty is in-
troduced in 3VSL to store neutral evidences eliminated from
certainty spaces as trust propagates while priori uncertainty is
kept unchanged.

F. Difference between Distorting and Original Opinions in
3VSL

To further understand the difference between distorting and
original opinions, we investigate two special cases shown
in Fig. 5. By analyzing these two topologies, we discover
the shortcomings of subjective logic, and point out original

(@ (b)
Fig. 5: Difference between distorting and original opinions

opinions can be used only once in trust computation while
distorting opinions are not.

Lemma 1 Let wi,ws,ws be three opinions, then
Alwr, O(wa,w3)) = O(A(wy,wa), A(wr,ws)). However,
A(@(wl,wg),wg) # @(A(wl,wg),A(wQ,wg)).
PROOF We first prove A(wi, O(ws,w3)) = O(A(wy,ws),
Awr, w3)).

Let w; = (b;,d;,ni,e;) where ¢ = 1,2,3, then both

7
A(wl,G)(wg,wg)) and @(A(wl,wg),
same result:

(w1,ws3)) yield the

b1b2€3 + b1b362
ey + €3 — €3€2
_ bidses + bidses
~ ey +e3 —ezeq
€3M2 T €273
es + e3 — esze
2 6362 362

= g + €3 — e3€g
where
Nog = 1-— blbg — bldg — €9
ns = 1-— blbg — bldg — €3

Now we prove A(O(wy,ws),ws) # O(A(w1,ws), A(ws,
ws)). According to the aggregation constraint, two Dirich-
let distributions can be combined if and only if their ev-
idence spaces are independent. Since opinions A(wg,ws)
and A(wsy,ws) share the same evidence space from
the opinion wsj, they cannot be combined. Therefore,

A(O(w1,ws),ws) is the only correct solution, and is not equal
t0 O(A(wi,ws), Aws, ws)). [ |

In subjective logic, A(wy, O(wz,ws)) and O(A(wy,ws), A(
wi,ws)) will give different results, which is contradictory to
the common sense. From Lemma 1, we also note that reusing
wi is allowed, but not ws. The difference between w; and
ws is that wy is a distorting opinion while w3 is an original
opinion. Therefore, we conclude that in trust computation,
original opinions can be combined only once, while distorting
opinions can be combined any number of times because they
do not impact the overall evidence space of the final opinion.

G. Expected Belief in 3VSL
A

Given a computed opinion w¥, we need to calculate the
expected probability that A is affirmative that X will perform
the desired actions. Opinion w’ contains four component
(b, d4%,n%, e4) which corresponds to vector in the evidence
space (14, s%,0%,3). In this Vector the expected number of
positive evidences are (4 +a%o% + 1) where a% is the base
rate which is set as 0.5 in this paper. According to Eq. 1, the
expected probability of positive events occurring is:

1
E(wg) = bx +axny + §€§ )
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Fig. 7: Illustration of an arbitrary topology
H. Bridge and Arbitrary Topologies

Starting from node C' backwards to A, the bridge topology
can be represented in a binary decomposition tree as shown
in Fig. 6. Note that only edge AB is used twice (both as
distorting opinions), which is allowed by Lemma 1. In fact,
3VSL can handle any arbitrary topology.

Theorem 2 Given an arbitrary two-terminal directed graph
(TTDG) G(V,E) where A, C are the first and second ter-
minals. Node  represents a person, edge e(u,v) denotes an
opinion w,. By applying discounting and combining opera-
tions, the overall opinion wé of A upon C' is solvable and
unique.

PROOF We prove the theorem in a recursive manner, i.e.
reducing the original problem into sub-problem(s) and keep
reducing sub-problems until the base case is solvable and the
solution is unique.

As shown in Fig. 7, we assume there are m nodes
(c1,¢2,- - ,¢m) connecting to C, ie. e(c;,C) € E where
i € [1,m]. There are n nodes (a1, a9, - - ,a,) being connected
from A, ie. e(A,a;) € E where j € [1,n].

Reduction

Case 1: If there is only one node connecting to C, i.e.
m =1, then wf = A(w?,wg).

Case 2: If there are more than one node connecting
to C, iie. m > 1, according to Lemma 1, then wé =
O(A(w,wd), Alws,w@), -, A(wZ ,wgr)). It is shown
that wé is solvable and unique if and only if the wé is
solvable and unique where wé is the result of the sub-problem

with sub-graph G’ = G — Xe(¢;,C) — C.

For Case 2, the network topology from {a;} to {c¢;} is
unknown and maybe complex, it is possible that ﬂﬁ are
connected at a certain node b. If b = A, then Abc;C are
parallel and can be combined. Eb\;é A, wé can be computed
in as 1) the combination of Abc;C, or 2) combining b;;\O
first and discounting it by wl‘;‘. According to Lemma 1, both
methods yields the same result, i.e. although we use the first

method, the final result is unique.

e e

(@) (b)
Fig. 8: Illustration of cycles in directed trust graph

After each reduction, G is reduced into G’ in the way that
|E| = |E| —m and |V| = |V| — 1. Applying reductions on
sub-problems recursively, finally the base case will arise, i.e.
|[E|=1and |[V|=2.

Base Case

The sub-graph of base case contains only one edge from A
to a; where j € [1,n].

Since w,fj is known from the original graph G, the base case
is solvable and the result is unique. Applying the equations in
Case 1 and 2 repeatedly, we can obtain an unique wé of the

original problem.
]

Based on Theorem 2, we design the ASSESS-TRUST
algorithm to apply 3VSL in arbitrary topology, where G
denotes the corresponding graph, A and C' denote the trustee
and trustor, respectively. ASSESS-TRUST algorithm can also
handle cyclic graphs, which is elaborated by two examples as
shown in Fig. 8. For any two node in Fig. 8(a), e.g. A and
C, wé can be computed from A(wg,ws) which ignores edge
AC because only incoming edges are considered in ASSESS-
TRUST. Similarly, in Fig. 8(b), the overall opinion of A on
C can be computed as O(A(wa, w8),wd). To the best of our
knowledge, this is the first algorithm which takes cyclic graph
into consideration.

Algorithm 1 ASSESS-TRUST(G, A, C)

Input: A directed graph G' with source node A and destina-
tion node C.
Output: A’s opinion upon C, w§.
:n<+0
2: for each incoming edges e(c;,C) € G do
3. if ¢; = A then
4 w; — wa
5:  else
6: G’ere(c,;,C')
7
8
9

wf + ASSESS-TRUST(G’, 4, ¢;)
wi + Awd, wd)

end if
100 n<+<n—+1
11: end for

12: if n > 1 then
A _
130 wH=0(w, - -w,)
14: else
15 wh =wy
16: end if

V. EXPERIMENTAL EVALUATION

Experimental validations of the 3VSL trust computational
model are hard due to the difficulties in measuring generic in-



terpersonal trust and the lack of established datasets, especially
those that could support more than a scalar representation of
trust. To address these challenges, we design an online system
aiming to collect generic trust data in the opinion format
and then validate the discounting and combining operations
in 3VSL.

A. Evaluation Setup and Trust Opinion Construction

100 participants are invited to evaluate the trustworthiness
of their 1st and 2nd hop friends (target persons) by filling
out the questionnaire based on prior work on the psychology
of trust [8]. The participants are randomly selected from
people around us, with various character and background.
The questionnaire is composed of 12 example questions, and
the answers of these questions are used to construct a scale
for measuring interpersonal trust. The judgment score (X) for
each question is scaled in 9 levels, where 8 represents“strongly
trust” and 0 as “strongly distrust”. In addition, we add another
question to let participants indicate how certain they are for
their answers to the 12 questions. The uncertainty score (Y")
is scaled in 5 levels, where 0 represents “not sure at all” and
4 as “very confident”.

After logging into the online system, a participant A will
first be asked to identify and evaluate the trustworthiness of
her two direct friends B and D. Then, A is told that her friend
B trusts C' with an opinion wg , and she is asked to evaluate
her opinion on C'. Finally, A is told D also knows C' (with
an opinion wf), and she is asked to evaluate C' again, by
integrating opinions from B and C. More details about the
online system could be found in [4].

From collected data, we construct trust opinions as follows.
The average score of X, denoted as T, reflects the portion
of evidences (in a participant’s mind) that supports the target
person is trustworthy. The uncertainty Y score is transferred to
priori uncertainty e, i.e. the more certain evidences exist, the
less uncertain a participant will be in judging the target person.
It’s difficult to obtain the accurate value of e, since participants
may not recall the exact number of evidences they used to
make their judgments. However, it is noticed that people tends
to form their opinions according to most recent experiences.
Hence, assuming 20 recent evidences are good enough for
a person to make fair judgments, the value of e is set as 1
when Y = 0 and 3/(5Y), otherwise. Each pair of T and e
is transferred into a opinion vector according to the following
equation:

(b,d,n,e):(T'(176),(17T)~(176),0,6) (6)

Notice that we assume the posteriori uncertainty in each non-
computed opinion as 0 because when human make decisions,
neutral evidences are usually ignored and only those positive
and negative ones take affect. In other words, we consider
posterior uncertainty only occurs due to distortion when trust
propagates.

B. Errors in Discounting and Combining Operations

To validate the discounting and combining operations, we
calculate the errors between expected beliefs obtained from
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the questionnaire results and the computed ones as follows:
E(A(wg,wé)) — E(wé)
E(wé%B)
E(O(A(WS,wl), Alwp,wB))) — BE(wa—?P)
A—B,D
E(we )

AErr =

GErr =

where wA~E denotes the opinion A hold upon C through B’s
opinion, wéf’B’D denotes the opinion A hold upon C' through
both B and D’s opinions.

The errors of combining and discounting operations can
be seen in Fig 9. As a comparison, we also plot the results
computed by subjective logic. The average error of 3VSL
is less than subjective logic while both of them are less
than 10%, i.e. 3VSL is an accurate model in computing
interpersonal trust. We further plot the CDF of the error data
in Fig. 10. For the combining operation in 3VSL, we can
see around 95% results have errors less than 20%. For the
discounting operation in 3VSL, 90% results have errors less
than 20%. However, the number of trust value with error
< 20% computed by subjective logic is smaller. This indicates
3VSL provides higher accuracy in multi-hop interpersonal
trust assessments.

The errors between measured and computed results are
caused mainly by two reasons. First, the scale used in the
questionnaire is discrete, while interpersonal trusts are actu-
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ally continuous, meaning selected option may not accurately
convey participants’ opinion. Second, a participant’s feeling
on 2nd hop friends is assumed to be vague, which indicates
the evaluation of multi-hop trust could not be 100% accurate.

VI. NUMERICAL EVALUATION

To further understand the features of the 3VSL model, we
conduct a set of numerical analysis on the two basic opera-
tions: discounting and combining. In the numerical evaluation,
we use the same parallel topology as in the previous section,
and adjusts parameters 7' and e to see whether the model
works as designed.

A. Discounting Operation

In the serial topology shown in Fig. 1(a), we first set
two opinions w# and wg with fixed priori uncertainty (i.e.
e = eB =0.2), and vary their belief parts by changing 7%
and TZ. According to Eq. 6, w and wg can be written as
(0.8T%,0.8(1-T4%),0,0.2) and (0.8TF,0.8(1-T%),0,0.2),
respectively. As shown in Fig. 11(a), the expected belief
E(A(wg7 w&)) tends to approach TF when T4 is high. When
T4 is low, E(A(wg,wE)) approaches to 0.5. That means A
tends to believe B’s opinion on C' when A highly trusts B;
however, A’s opinion on C' tends to neutral when she does
not trust B.

Secondly, we evaluate the impact of both belief and priori
uncertainty on discounting operations. We vary Tg and e4 5
from 0 to 1, which results an opinion (T4 - (1 — ef), (1 —
T4) - (1 — ep),0,e8). At the same time, we keep oJC =
(0.7,0.1,0, 0.2) As can be seen in Fig. 11(b), E(A(wa,wE))
are close to T4 when e4 is low, and it becomes neutral when
e‘é is high. This phenomena indicates when A is more certain
about her discretion on B (i.e. smaller eg), she will rely more
on B to form her opinion on C. Otherwise, A’s opinion on
C tends to be neutral as she cannot judge due to the lack of
evidences.
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Fig. 12: a) Influence of priori uncertainty on combining operation b)
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B. Combining Operation

Considering the topology shown in Fig.1(b), we set wéQ as
a fixed opinion (0.7,0.1,0,0.2) (hlgh belief) while wél as an
variable opinion (0.125 x (1 —ec 1),0.875 x (1 —eg ), 0, ec )
(high distrust) with various priori uncertainty. As shown in
Fig. 12(a), when eél is less than eég, the expected belief of
combined opinion E(@(wc ,wc 2)) tends to approach wé .
When eél is greater than eé , E(@(wél,wéQ)) gets close
to wé? That means combining two opinions always yields a
result which is closer to the opinion with less priori uncertainty
or more evidences.

We then evaluate the impact of belief on the combining
operation, by settlng wé = (0.7, 0 1,0,0.2) (high belief)
while wé (0. 8TC2,0 8- (1— TC ), 0, 0 2) with various
beliefs. In Fig. 12(b), when T * and T ! are close, the
expected belief E(@(wé ,wé )) is close to but a little higher
than both E(wé‘) and E(wéz). When ng and Tg}l become
different, E(@(wéﬂwéﬂ) gets close to the mean of E(wg')
and F (wéz). We conclude that combining two opinions with
the same priori uncertainty and belief will enhance the original
opinions, due to the increased evidence space. On the other
hand, combing opinions with same priori uncertainty but
different beliefs will neutralize these two opinions.

C. Impact of Bridge Opinion

3VSL is able to handle the bridge topology as shown in
Fig. 1(c), while subjective logic could not because it has to
remove a certain edge (e.g. wg). We believe the being removed
edge (bridge opinion) is also important in assessing trust in
the bridge topology.

By eliminating the bridge opinion (as subjective logic does),
the bridge topology becomes a parallel topology where A con-
nects to C' by two paths ABC and ADC'. We set opinion vec-
tors wg, wé, wg and wg as (0.7,0.1,0,0.2), (0.5,0.3,0,0.2),
(0.5,0.3,0,0.2), and (0.5,0.3,0,0.2), respectively. Then, we
vary the bridge opinion w5 as ((1 — eB)T5, (1 —eB)(1 —
Tg)’ 0, eg)

We pick a high priori uncertainty (2 = 0.6) and a low
priori uncertainty (e = 0.15), and vary the belief by changing
TE from 0 to 1. As shown in Fig. 13(a), when the e3 = 0.15,
the expected belief of the bridge topology are closer to Tg
that the parallel topology. When eB = 0.6, it approaches T5
as well yet not as much as e = 0.15. It is shown that when
bridge opinion is a certain one, its impact on the final result
could not be omitted.
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Fig. 13: a) Influence of bridge opinion’s belief on the resulting
expected belief b) Influence of bridge opinion’s priori uncertainty
on the resulting expected belief

Then, we vary eB from 0 to 1 and pick a high belief (T'5 =
0.7) and a low belief (I'5 = 0.3) of the opinion w5. As can
be seen in Fig. 13(b), when €5 is low, the impact of the bridge
opinion should not be ignored. When €5 is high, the expected
belief gets close to the parallel topology. That means when
eg is high (no enough evidences), the bridge opinion can be
ignored as what the subjective logic does. However, when the
eB is low, it has significant impact on the final result and must
be taken into account. Moreover, we note that a higher belief
of the bridge opinion leads to a larger expected belief than the
parallel topology and verse versa.

VII. CONCLUSION AND FUTURE WORK

Three-valued subjective logic is proposed to compute the
interpersonal trust between any two persons who have not
had interactions before. 3VSL introduces posteriori uncertainty
space to store the evidences distored from certain spaces as
trust propagates, and priori uncertainty space to control the ev-
idence size as trusts combine. We also discover the differences
between distorting and original opinions, i.e. original opinions
are so unique that they can be reused in trust computation
while distorting opinions are not. We validate 3VSL both in
theory and real world evaluation. The results indicate that
3VSL is sound and can be applied in computing trust with
high accuracy. For the future work, we will improve 3VSL
by employing stochastic process to model a trust opinion.
Also, we will evaluate 3VSL in real word scenarios with more
comlicated topology. In addition, Bayesian analysis will be
integrated to make 3VSL be able to handle evidences from
multiple sources.
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