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Abstract—Voice communications are valued for their ease
of use and the rich information they provide, offering an
immediate, clear, and efficient way to convey messages. However,
ensuring the clarity and reliability of voice communications
in low-bandwidth networks poses a technical challenge. This
research explores the efficacy of Text-to-Speech (TTS) models
and vocoder combinations versus traditional audio codecs in low-
bandwidth networks, highlighting considerations for voice clarity
and network resource management. Traditional audio codecs in
bandwidth-limited environments often compromise audio quality
and reliability. On the contrary, TTS models, supported by the
advancements in deep and machine learning, present a potential
alternative. Through a methodical comparison using various
evaluation metrics, the study aims to offer valuable insights into
their comparative impacts on audio quality and network behavior.

Index Terms—TTS, Audio Codecs, CLIP, Voice Communication,
Resource-Constrained Networks

I. INTRODUCTION

Voice communications over networks are pivotal in many
scenarios, largely due to their inherent efficiency and the rich
information they can transmit. Unlike text-based methods, a
voice message conveys both the identity of the user and the
content of the message without the need for recipients to
physically engage with their devices. This direct and easily
discernible method of communication is crucial where quick
and unmistakable understanding is vital. However, maintaining
the clarity and reliability of voice communications in settings
with limited bandwidth introduces a challenge.

Traditionally, audio encoding has been the go-to solution
for voice communication needs over networks, serving as the
conventional method for transmitting voice. While audio codecs
are optimized for many scenarios, and may even function
in low-bandwidth networks, their dependency on network
performance for real-time communication becomes a glaring
limitation in bandwidth-constrained networks, especially when
congestion happens in urban areas or disruption occurs due
to terrain-induced effects on Received Signal Strength (RSS)
and link quality degradation in rural wireless networks. The
compromise then is often on the audio quality, delay, and
disruption tolerances. These trade-offs not only jeopardize the
clarity and accuracy of the message but also become notably
detrimental in scenarios such as mission-critical applications

where the accuracy and prompt delivery of the information are
crucial.

Moreover, the landscape of audio communication is rapidly
evolving. The advancements in neural networks, deep learning
techniques, and the pace of hardware development are pushing
the boundaries of what is possible in voice communication
over resource-constraint wireless networks. The evolution in
technology introduces a novel method that capitalizes on Text-
to-Speech (TTS) models to address the challenge of clear
voice communication in resource-constrained networks. Instead
of transmitting larger packets of encoded voice data, the
strategy of utilizing TTS models involves sending only text
and basic user information. Once received, the voice can be
regenerated at the receiver, capitalizing on the fact that text
data is significantly leaner compared to its encoded audio
counterpart. While traditional audio codecs do not require
excessive bandwidth, their data packets are considerably larger
and demand more bandwidth to transmit compared to the data
needed to regenerate TTS audio. Employing TTS for audio
communication offers an efficient means to manage scarce
resources in limited-bandwidth scenarios. This approach shows
a robust, resource-efficient alternative for voice communication
in resource-constrained networks.

The main contribution of this paper is to provide insight
into the comparative nuances of utilizing Text-to-Speech (TTS)
models with varying vocoders versus traditional audio codecs
in low-bandwidth networks. The insight derived provides a
valuable perspective toward improving voice intelligibility,
quality, clarity, and managing valuable network resources.

Similar to the work by Dantas et al. in 2019 on a speech-
to-text-to-speech pipeline [1], our study expands the scope
by analyzing combinations of Text-to-Speech (TTS) models,
vocoders, audio codecs, and their effects on audio quality
and network performance in resource-constrained scenarios.
Since the work of Dantas et al., which demonstrated the
potential of TTS systems in voice communication, rapid
advancements have led to the introduction of new machine
and deep learning-based codecs and new developments in
TTS systems. Furthermore, Dantas et al. conducted their
evaluation using only one audio codec (PCM) and one TTS
system (Baidu’s Deep Speech architecture). Their methodology



relied on participant assessments, Word Error Rate for
recognizing TTS outputs, and Levenshtein Distance [2] to
discern words and quantify the number of edits required
to correct the text for the speech-to-text process. These
methods, susceptible to human error and bias, contrast
with our research, which adopts a more robust, quantitative
approach. We evaluate the efficiency of different TTS systems
and vocoder combinations using quantitative metrics such
as Fréchet Distance [3], Intelligibility Score (IS) based
on Automated Speech Recognition (ASR), and Contrastive
Language-Voice Pretrained (CLVP) [4] scores to assess these
technologies under resource constraints. This approach provides
a more standardized and reproducible measure of performance,
emphasizing the impact of different TTS systems and vocoder
combinations on network performance and highlighting areas
where TTS could significantly enhance user experience and
network efficiency.

Our initial findings indicate a promising trend and potential
replacement of audio codecs with TTS systems. Specifically,
the VITS [5] model delivers remarkable clarity, closely
mirroring the original recordings, while Fastspeech2 [6]
impresses with its rapid sample generation. As we dive deeper,
it becomes evident that TTS systems might not just be
alternatives, but potentially perform better in limited bandwidth
networks.

The rest of this paper is organized as follows. Section II
explores TTS models, their key components, audio codecs,
and the evaluation metrics for both TTS and audio codecs.
In Section III we present measurements and analyze the
results. Finally, we conclude in Section IV by summarizing
our findings.

II. BACKGROUND

In this section, we explore key components and concepts
of our research on voice communication in limited networks.
We discuss Text-to-Speech (TTS) models and their main
components, describe key concepts and features of the audio
codecs we used, and describe the metrics that guide our
evaluation.

A. Text-to-Speech

Text-to-Speech (TTS) synthesizes understandable and
natural-sounding speech from text using natural language
processing, signal processing, and machine learning. The
process involves three key components: Text Analysis,
Acoustic Modeling, and Vocoding.

Text Analysis processes raw text into linguistic features,
handling pronunciation, normalization, and segmentation [7],
[8]. Modern end-to-end neural TTS methods have simplified
this stage but tasks like grapheme-to-phoneme conversion are
still crucial for managing diverse text formats [9].

Acoustic Modeling transforms these linguistic features into
spectral representations, preparing them for vocoding [10].
Different models address various TTS challenges. For example,
Tacotron employs a sequence-to-sequence model with attention

to map text to mel spectrograms, while FastSpeech uses a non-
autoregressive method for faster synthesis [6], [11]. VITS on
the other hand, combines Variational AutoEncoders (VAEs)
and adversarial training from GANs for high-quality speech
output [5].

The last component, vocoding, is responsible for generating
the playable speech waveform. Techniques vary among
vocoders: Autoregressive vocoders operate sequentially,
potentially slowing down speech generation [12], while
Flow-based vocoders use normalizing flows for faster, parallel
waveform generation [13]. GAN-based vocoders like Parallel
WaveGAN and MelGAN optimize waveform quality using
Generative Adversarial Networks [14].

B. Audio Codecs

Audio codecs compress audio samples for transmission over
networks, typically using lossy compression to reduce file size
at the expense of clarity and quality. Our study focuses on
open-source codecs suitable for low-bandwidth networks.

Starting with a more traditional audio codec, Codec 2 is a
low-bitrate codec using sinusoidal coding optimized for human
speech, operating at bit rates from 450 bit/s to 3.2 Kbit/s,
making it ideal for Mobile Ad-Hoc Networks (MANETs) [15].
This technique models speech using harmonically related sine
waves, efficiently encoding pitch and amplitude.

Transitioning from the traditional methods employed by
Codec 2, Google’s Lyra represents a modern approach by
integrating a machine learning technique, generative model
to recreate the speech signal for audio compression [16]. It
enhances audio quality at low bitrates (3.2 Kbit/s to 9 Kbit/s),
making it suitable for real-time communications in bandwidth-
constrained environments.

Similarly, Facebook’s Encodec uses a neural network-
based encoder-decoder architecture for high-fidelity audio
compression at various rates (1.5 to 24 Kbit/s) [17]. Both
Lyra and Encodec utilize neural techniques to improve
compression efficiency and audio quality, catering to streaming
and communication in resource-limited networks.

C. Metrics

Next, we delve into the metrics we used for evaluating both
TTS models and audio codecs in low-bandwidth networks.
These metrics offer a measurable insight into the quality and
efficiency of the audio compression techniques and efficacy of
TTS systems.

1) Fréchet Distance: The first metric we utilize is the
Fréchet Distance (FD), a concept described in detail in work
by Alt et al. [3]. In audio codecs and Text-to-Speech (TTS)
models, FD plays a pivotal role in quantitatively assessing
model performance. Specifically, FD is employed to compare
the reference audio and the audio that is in question. However,
it is crucial to clarify that in our approach, we do not directly
compute Fréchet Distance on voice signals but rather extract
feature vectors from the audio to compute FD. Extracting
feature vectors offers significant advantages: it reduces the
complexity of voice signals, therefore enhancing computational



efficiency, and normalizes the data, ensuring comparability
between different samples. To compute FD, we first use
feature vectors extracted via CLVP model for both real and
generated/processed speech samples. Then, we calculate the
mean and covariance of these feature vectors for each set
of samples. The FD score is finally obtained by measuring
the Fréchet Distance between the two Gaussian distributions
represented by these statistical measures. Mathematically, this
distance is given by:

FD = ||µr − µg||2 + Tr(Σr +Σg − 2(ΣrΣg)
1/2) (1)

where, µr, µg represent the means, and Σr and Σg denote the
covariance matrices of the feature vectors from the real and
generated speech samples, respectively. Tr is the trace of a
matrix, representing the sum of its main diagonal elements.

A lower FD score indicates a closer resemblance between the
two distributions, signifying a higher fidelity of the generated
speech in mirroring real spoken text, thereby reflecting superior
model performance.

2) CLVP Score: Inspired by OpenAI’s Contrastive
Language-Image Pretraining (CLIP), the Contrastive Language-
Voice Pre-trained (CLVP) model adapts this approach for
audio-text pairs [18]. It uses contrastive learning to distinguish
and align corresponding audio-text pairs, enhancing model
accuracy and understanding with datasets like LJ Speech [19].
The dual-encoder architecture of the CLVP model processes
audio clips and textual descriptions to transform them into
embeddings. These embeddings are projected into a shared
latent space, where the model calculates the CLVP score
by performing a dot product called Einstein Sum between
matched pairs [20]. This score measures the similarity between
text and speech embeddings, with higher scores indicating
better alignment and model effectiveness.

3) Intelligibility Score: The Intelligibility Score (IS)
evaluates TTS systems using the Wav2Vec model,
which discerns correct audio snippets from distractors
with a contrastive loss function [21]. Specifically, the
Wav2Vec2ForCTC transcribes TTS-generated audio for
comparison with the original text. This process, grounded in
Connectionist Temporal Classification (CTC) loss, aligns audio
input with text output without fixed sequence alignment [22].
As shown in Figure 1, CTC loss introduces a ‘blank’
character for managing sequence discrepancies, calculates
the likelihood of accurate transcriptions by considering all
potential alignments. This ensures that the model optimizes
for accuracy during training.

In TTS systems, the Intelligibility Score (IS) uses the CTC
loss function to evaluate the accuracy of ASR models in
transcribing TTS-generated speech. This involves normalizing
audio samples from both TTS and real speech to unify input
levels. The ASR model, Wav2Vec2ForCTC, computes CTC
loss by comparing its transcriptions to the actual text and
adjusting for natural speech variations when real speech is
present. The final IS, the average of these adjusted losses,
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Fig. 1: Steps taken by CTC method discern the word ‘good’.

measures how closely the TTS-generated speech matches the
original text in clarity and content, with lower scores indicating
better model intelligibility and naturalness.

4) Inference Time: In the context of real-time voice
communication over bandwidth-constrained networks,
evaluating TTS models using the inference time metric
is crucial because it directly affects real-time data delivery
in real-time voice communication scenarios. In this study,
inference time was precisely measured from the timestamp
the input text was provided to the TTS model until the audio
output file was generated. The duration a TTS model takes to
translate text into natural-sounding speech is a key performance
indicator in environments where network resources are limited,
and keeping latency as low as possible is essential. For
such applications, it is important that the TTS model not
only generates clear and understandable audio but does so
with minimal delay. This requirement is vital in maintaining
effective communication, ensuring that the generated speech
is delivered promptly without taxing the limited network
resources, especially in mission-critical applications. The
challenge lies in optimizing TTS models to achieve a balance
between swift response times and maintaining speech clarity,
all within the constraints of limited bandwidth. This balancing
act is especially crucial in domains like mission-critical
applications where real-time data delivery is as important as
the quality and clarity of the voice signal output.

III. METHODOLOGY

We conducted experiments using a computer equipped with
an Intel Core i9-9900K CPU, NVIDIA GeForce RTX 2080
SUPER GPU (3072 CUDA cores), 32 GB of RAM, and an
INTEL 660P series SSD, ensuring efficient data processing
for model training. We utilized the LJ Speech dataset, which
includes approximately 24 hours of single-speaker English
recordings at a 22.05 KHz sampling rate, for its extensive use
in TTS research and for facilitating robust comparisons of TTS
models with traditional audio codecs [19].

We tested three prominent TTS models: FastSpeech2 [6],
Tacotron2 [11], and VITS [5], using the ESPNet 2
framework [23]. These models were paired with various
vocoders including Parallel WaveGAN [24], HiFiGAN [25],
Style MelGAN [26], Fullband MelGAN, and Multiband
MelGAN [27]. Additionally, we used audio codecs such
as Codec 2 [15], Lyra [16] and Encodec [17]–suitable for



Vocoder # of Iterations Checkpoint Size
Parallel WaveGAN (v3) 3M 214.9MB
Fullband MelGAN (v2) 1M 138.4MB

Multiband MelGAN (v2) 1M 105.3MB
HiFiGAN (v1) 2.5M 968.9MB

Style MelGAN (v1) 1.5M 108.5MB

TABLE I: Training and checkpoint information for vocoders
used in the evaluation.

Fig. 2: Frechet Distance between the original sample from LJ
Speech dataset and synthesized/decoded speech.

bandwidth-constrained networks. We randomly selected voice
samples from the LJ Speech dataset, and generated, encoded
and decoded the audio samples using the chosen codecs. The
effectiveness of the TTS models was assessed by comparing
the TTS-generated samples with the codec-processed versions
using specific evaluation metrics.

In this section, we compare TTS results to traditional audio
codecs. To achieve objective comparison we use the following
metrics.

A. Frechet Distance

Figure 2 presents the distribution of FD values among 15
unique combinations of TTS models and 6 audio codecs. The
x-axis denotes the FD values, while the various pairings of TTS
models and audio codecs are outlined on the y-axis.

The Figure 2 shows that both FastSpeech2 and Tacotron2
exhibit higher FD values compared to VITS, indicating
that VITS maintains a closer resemblance to the original
recording during its speech synthesis. It is also evident that
Tacotron2 displays a broader range of values, suggesting
some level of inconsistency in its output. In the realm of
vocoders, Style MelGAN and Fullband MelGAN consistently
demonstrate lower FD values, outperforming their counterparts
when integrated with all three models.

In comparing audio codecs, it is clear that the combined
output from any TTS model and vocoder more closely

Fig. 3: Intelligibility Score based on LJ Speech transcripts and
synthesized/decoded speech.

mirrors the original sample than that produced solely by the
audio codecs. As anticipated, a reduction in encoding rate is
associated with a compromise in quality. This correlation is
pronounced in the Encodec with a 1.5 Kbit/s encoding rate,
which exhibits the highest FD, diverging most from the original
sample.

When drawing parallels among audio codecs with proximate
encoding rates – Encodec at 3 Kbit/s, Codec2, and Lyra at
3.2 Kbit/s – Encodec produces speech with higher FD. While
Codec2 and Lyra showcase comparable efficacy, Lyra slightly
edges out Codec2, possibly due to its unconventional audio
encoding approach. Notably, despite boasting a loftier encoding
rate, Encodec at 12 Kbit/s still registers a higher FD than Lyra at
9 Kbit/s. This observation clearly shows the optimized nature
of the Lyra audio codec, marking it as a better choice over
Encodec.

B. Intelligibility Score (IS)

Figure 3 depicts the distribution of IS across 15 different
combinations of TTS models paired with 6 distinct audio
codecs. Similar to Figure 2, on the x-axis we have IS, whereas
the y-axis represents the various combinations of TTS models
and audio codecs.

An observation emerging from the data is the pronounced
spread of VITS model in its distribution relative to the
other two models. Specifically, when paired with Parallel
WaveGAN, this combination yields results with notable
variability and it suggests that the remaining models offer a
more consistent mapping to the original transcript. Furthermore,
Fastspeech2 manifests the narrowest distribution, leading to
highly consistent outcomes. In contrast, Tacotron2, despite its
broader spread, consistently reports the lowest IS across all
vocoder pairings.

Overall, audio codecs and TTS models seem to showcase
comparable performance. However, a subtle performance



Fig. 4: CLVP Score based on LJ Speech transcripts and
synthesized/decoded speech.

improvement is discernible in favor of audio codecs when
considering the spread of their distributions.

A crucial point of consideration that we need to make
is that the CLVP model is trained on the LibriSpeech [28]
and Common Voice datasets [29], followed by fine-tuning on
libriTTS [30]. Given that our evaluation uses the LJ Speech
dataset, we encounter results that appear counterintuitive,
suggesting superior intelligibility over the actual ground
truth. This anomaly can be explained by the ideal recording
conditions of the LJ Speech dataset and its single-speaker
nature. Consequently, certain TTS model pairings might appear
to synthesize speech surpassing the original quality.

C. CLVP Score

Figure 4 displays the CLVP score in a descending order on
the x-axis, with combinations of TTS models and vocoders, as
well as the related audio codecs, on the y-axis. Traditionally,
a lower CLVP score should indicate a closer representation of
text within the audio according to [4]. However, our results
challenge this premise. Audio codecs with lower encoding rates,
which would be expected to have greater losses, curiously
produce lower CLVP scores. This counterintuitive finding
suggests that a higher CLVP score might actually offer a
more accurate representation of text in the audio. Furthermore,
it is clear that TTS model and vocoder pairings generally
outperform audio codecs in fidelity. The standout is the
Fastspeech2 model paired with the Style MelGAN vocoder,
achieving a CLVP score close to 15, while other TTS models
hover between CLVP scores of 13 and 14. Among audio codecs,
Lyra with 9 Kbit/s consistently achieves the highest CLVP
score, yet it still lags behind the average performance of TTS
models.

Fig. 5: Inference time required for each TTS model and vocoder
combinations.

D. Inference Duration

In assessing hardware performance and computational
complexity, we focused on the inference duration required
by TTS models to generate speech samples. Compared to
the simpler decoding process of audio codecs, TTS models
show varying inference durations based on model and vocoder
combinations. Figure 5 displays the inference duration, with
the x-axis denoting duration in seconds and the y-axis showing
model and vocoder combinations. The results were consistent.
VITS, which produced more accurate speech samples, took
about 300 to 700 ms longer per sample. Interestingly, the
choice of vocoder in VITS did not affect the duration. On the
other hand, Fastspeech2 generated samples fastest as the name
suggests. Among vocoders, HiFiGAN had the longest inference
duration for both Tacotron2 and Fastspeech2 correlated with its
checkpoint size as shown in Table I, aligning with its higher
quality and clarity as well as complexity.

The results further indicate the performance in a bandwidth-

Fig. 6: Concurrent voice streams possible within varying
network bandwidth.



constrained network scenario, for instance, a network with
a bandwidth of 10 Kbit/s, an audio codec with an encoding
rate of 3.2 Kbit/s can facilitate three concurrent real-time
voice streams. Link layer protocol can partition encoded real-
time voice samples into smaller chunks for transmission over
the network. To ensure smoother playback, voice samples
can undergo a buffering process at the receiver. The overall
latency, including the buffering latency, typically remains
below the range of 500 ms, as the evidence shown in an
earlier research [31]. In a network with similar resources and
configuration, TTS can handle not just three concurrent data
streams, but a significantly larger number. We determined the
median text size from the LJ Speech dataset samples used for
TTS evaluation by counting characters and character memory
allocation which is approximately 128 B or 1.024 Kbit. With
the median duration of generated TTS voice samples at 8.74 s,
we can calculate the encoding rate (ER) using the formula:

ER =
DataSize

Duration
(2)

Substituting the given values yields:

ER =
1.024Kbit

8.74 s
≈ 0.117Kbit/s (3)

This translates to eighty-five concurrent transmissions, a
significant contrast to the three allowed by audio codecs.

The Figure 6 offers a more detailed understanding of
concurrent transmissions in logarithmic scale on the y-
axis against diverse network bandwidths on the x-axis.
TTS utilization greatly boosts the potential for concurrent
transmissions, outpacing other audio codecs by a wide margin.
However, it is crucial to recognize that the inference process
at the receiver does slightly increase latency compared to
traditional audio codecs, resulting in delays between 1.2 s to
1.9 s as shown in Figure 5 [31].

IV. CONCLUSION AND FUTURE WORK

In this study, we investigated the efficiency of
Text-to-Speech (TTS) models in comparison to traditional
audio codecs in low-bandwidth conditions. Utilizing metrics
such as Fréchet Distance, Intelligibility, and CLVP scores,
as well as inference time, we discerned the performance
characteristics of various models, vocoders, and audio codecs
in bandwidth-constrained environments. While audio codecs
consistently performed well in the Intelligibility Score, TTS
models, especially when paired with the appropriate vocoders,
demonstrated superior audio clarity as evidenced by metrics
like Fréchet Distance, Intelligibility, and CLVP Scores.
Notably, VITS emerged as the leading model in terms of
audio fidelity, whereas Fastspeech2 excelled in processing
speed, as indicated by the inference duration metric. We
further investigated the implications of inference duration in
resource-constrained networks. In such settings, TTS systems
offer efficient resource management, allowing a network
to support a higher number of concurrent TTS-generated
playbacks, provided the application can tolerate the inherent
latency associated with inference.
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