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Abstract—Real-time applications have become increasingly
common and necessary to perform everyday tasks for many
users. These applications speed up their communications by
connecting users to the closest servers and clustering nearby
users together. In replica server selection and client clustering,
determination of the closest host quickly and accurately is crucial
to quick delivery of application responses and the satisfaction
of users’ expectations. Researchers commonly use latency as
the primary metric of network proximity and have developed
various latency approximation tools. However, these tools do
not yet offer an attractive balance of measurement accuracy,
scalability, and maintainability. In this paper, we propose a new
latency estimation system for arbitrary hosts using host-to-CDN
latency measurements. Compared to existing latency estimation
tools, our technique offers superior coverage of the IP address
space and latency estimation accuracy. With improved coverage
and accuracy of latency estimation it will become easier to
establish low latency connections between hosts in a network,
improving the responsiveness of real-time and interactive Internet
applications.

Index Terms—Ilatency estimation, server selection, P2P cluster-
ing, network coordinate systems

I. INTRODUCTION

Low latency network communication is prerequisite to a
responsive user experience in interactive and real-time Internet
applications. In applications such as augmented reality, online
gaming, video chat, and cloud-based voice recognition even
small communication delays lead to user-perceived loss of
responsiveness and, eventually, user attrition and loss of appli-
cation revenue [1]-[7]. For example, when latency is high in
online games player views of the global game state diverge [8].
View inconsistency makes it harder for players to observe and
control game actions, which makes it more difficult for them
to remain immersed in the game and perform well [9]-[11].
In practice game forums are full of complaints about high
latency to game servers and to other players in games with
peer-to-peer hosting models [12]-[14].

Many applications reduce communication latency by direct-
ing users to connect with nearby servers and other nearby
users. Lower latency connections deliver content more quickly
thanks to a faster expansion of the TCP congestion window
and more rapid retransmissions over low round-trip time (RTT)
paths. Lower latency also speeds up short message exchanges,
especially in group applications, where communication rounds
may need to wait for the most lagged user [15]. Applications
of these principles exist in DNS redirection used by CDNs [16]
and proxied connections in public cloud networks [17]-[19].

The challenge then is how to accurately and efficiently
select a server, or a group of users, closest to a given user.
Direct latency probing, for example using ping, is accurate,
but also time consuming and does not scale [20]. Tools, such
as CloudGPS, reduce the number of user measurements, but
require cooperation between ISPs and cloud providers [21].
Content distribution networks (CDNs) rely on DNS redi-
rection, though when a user’s DNS server is not nearby,
for example in the case of public DNS infrastructure, the
likelihood of selecting a nearby server is low [22].

Instead the research community has proposed a number of
predictive matchmaking tools to identify the closest replica
server to a client IP based on geographic proximity [23]-
[26], or network distance [20], [27]-[30]. However, these
tools suffer from incomplete coverage of the IP space, make
predictions based on stale network measurements, or are
proprietary. Finally, many of these projects are defunct leaving
applications with few realistic options for end-point selection.

This paper makes two contributions. First, we undertake a
comparative evaluation of currently available latency esti-
mation tools [23], [26], [27], [31], [32]. We show that these
solutions suffer from low coverage of the IP address space
and low latency estimation accuracy, which translates to poor
choices of nearby network endpoints. Second, we propose
Ping through CDN Proxies (pcp) — a new tool for Internet
latency estimation. pcp approximates the latency between two
arbitrary hosts in a network based on the length of a path in
a virtual network topology built from measurements between
clients and proxy CDN servers. Our extensive evaluation on
the Dasu and Seattle network testbeds shows that pcp offers
more accurate latency approximation than existing tools [33],
[34]. pcp is also more scalable than ping and in fact, unlike
existing tools, does not require active probing. Finally, pcp is
likely to stand the test of time, because it uses CDN servers
for its measurement infrastructure and does not require special
network coordinate servers to be maintained [27], or ISP
cooperation [21].

We expect that pcp will provide an accurate, scalable, and
long-lived alternative for Internet latency estimation. Improved
endpoint selection has the potential to improve interactive and
real-time application responsiveness as well as the quality
of user experience with these applications. We are currently
in talks with several CDN operators to develop a public
implementation of pcp and offer it as a free service to improve
the accuracy of replica server selection and reduce Web page



load times.

The rest of the paper is organized as follows. In Section II
we discuss work related to Internet latency estimation. Sec-
tion III shows the comparative evaluation of currently active
latency estimation and endpoint selection tools. In Section IV
we describe pcp. In Section V we analyze pcp performance
against other latency approximation tools in selecting nearby
hosts for clustering and selecting the nearest server. Finally,
in Section VI we conclude and outline future work.

II. RELATED WORK

To motivate pcp and aid in interpretation of our measure-
ments, we briefly describe existing latency estimation tools
and their shortcomings.

A. ping

ping estimates round trip time (RTT) between network
hosts with ICMP control packets. Under the assumption of
path symmetry one way latency is often considered as RTT/2,
but we will treat latency and RTT interchangeably in this
paper. However, ping does not scale for endpoint selection
in large systems [20], [21]. First, when there are many clients
trying to select the closest from a few servers, each server will
experience high probing traffic. For this reasons many CDN
replica servers do not respond to ICMP probes. Second, to
select nearby hosts in a peer-to-peer setting a client needs to
probe potentially thousands of other clients — a prohibitively
time consuming proposition. To combat the high cost and
delay of all-to-all probing, several tools have been developed
to provide latency approximation between hosts.

B. IP geolocation databases

IP geolocation databases maintain physical location en-
tries obtained from whois and DNS records, or by mining
websites that ask for users’ physical addresses [23], [24].
Applications may compute the great-circle distance between
endpoints as an estimate of network proximity. However,
network latency depends on factors such as network topology,
capacity, ISP peering, and traffic conditions, and so geographic
proximity is often a poor predictor of latency. Additionally,
when entries in geolocation databases are stale, for example
when large IP blocks of CDN servers are recorded for the same
location and not updated with dynamic reassignment, endpoint
selection becomes inaccurate. Finally, our results show that IP
geolocation databases suffer from incomplete coverage of the
IP space.

C. Traceroute-based tools

Traceroute-based tools take a more dynamic approach and
estimate and record the physical location of an IP address
from locations of nearby routers identified by traceroute
paths to that IP [26]. However, traceroute may not re-
turn information for all hops and accurate location estimates
require traceroutes from multiple vantage points [35]. Paris
traceroute improves the accuracy of router discovery,
but has not been incorporated into the one currently active
traceroute geolocation tool we were able to evaluate [26].

D. Network Coordinate Systems

To provide self-updating latency estimation without all-
to-all measurements the research community has proposed
several network coordinate systems (NCSs). NCSs use net-
work measurements to build a graph of Internet topology and
predict end-to-end network performance based on paths along
graph edges [27], [28], [36]. Another approach is to embed
nodes in a multidimensional space [29], [30], however such
embeddings are sensitive to initial node placement and do
not reflect Internet triangle equality violations [20]. A more
direct approach based on explicit measurement of inter-AS
path segments was proposed by Lee etal. [36].

Regardless of the underlying data structure, predictions
require that a large number of path measurements be kept
up to date. Systems based on the Meridian P2P measurement
system reduce the problem size by maintaining measurements
only between application servers and can identify the closest
among them to a given IP through recursive search [37]-
[39]. HybridNN takes a similar approach, but complements
the search process with ping measurements to avoid local
minima [40]. However, these tools are intended to identify the
closest server to a querying node and do not provide general
latency approximations, which could be used to cluster nodes
in peer-to-peer applications. Finally, NCS approaches have
been shown to be less accurate in edge networks and areas,
where the nearest NCS landmark server might be far from
clients [41].

E. Leveraging Internet infrastructure

To eliminate the needs for NCS landmark servers (with well-
known coordinates) a couple of approaches leverage existing
Internet infrastructure for endpoint selection. Gummadi et al.
propose King, which approximates latency between two hosts
based on the latency between their authoritative DNS servers,
which are generally located near the hosts they serve [31].
To obtain latency between two DNS servers, King relies on
one of the servers to allow recursive DNS queries from clients
outside its subnet. Our measurements show that the number of
such servers is much lower today than at the time of King’s
publication in 2002, since many DNS servers disable recursive
queries to protect from DNS amplification attacks [42]. Turbo
King (T-King) improves on the original approach by crawling
the Internet to create a list of DNS servers that allow recursive
queries [43]. However, even with those improvements only
54% of DNS are available for recursive queries [43].

Another tool for endpoint selection based on Internet infras-
tructure is CDN-based Relative network Positioning (CRP) by
Su etal. [32]. CRP calculates the cosine similarity between
CDN addresses resolved for different clients. This technique
is useful in identifying clusters of nearby clients, but does not
by itself predict latency within a cluster. Inability to estimate
latency makes CRP unsuitable for nearest server selection
without additional probing. Also, for nodes that do not share
CDN servers in DNS resolutions, CRP is not able to determine
proximity.



TABLE I
IP SPACE COVERAGE AND DATACENTER SELECTION ACCURACY.
Neustar | tracert tool | iPlane | King | T-King
[23] [26] [27] [31] [43]
Coverage (%)  93.20 63.36 3927 193 67.7
Accuracy (%)  26.80 22.04 9.60 N/A N/A

FE. Integration with network infrastructure

Finally, there are several proposals to improve server se-
lection though tools that are integrated with existing network
infrastructure. The Extensions to DNS (EDNS) proposal aims
to improve the accuracy of DNS redirections by passing a
client’s IP subnet to the authoritative DNS [44]. However,
EDNS mechanisms are not yet widely adopted by ISPs and
open DNS servers [45]. Several solutions also propose server
selection based on network measurement and server load infor-
mation from cloud providers [21], [46]. Closest to our work is
CloudGPS, which similarly to pcp measures network latency
to a small number of nearby servers [21]. However, CloudGPS
relies on active probing and AS topology information, which
is difficult to keep up-to-date. Additionally, CloudGPS does
not offer a solution to the client clustering problem.

III. COMPARATIVE EVALUATION OF LATENCY
ESTIMATION TOOLS

To make sense of the different tools for latency estimation
and endpoint selection we conducted an analysis of their cov-
erage of the IP space and accuracy with respect to ping. We
entered 100,000 random, reachable IP addresses to currently
available endpoint selection tools to predict the closest of four
public cloud datacenters in the continental US operated by
different providers. Table I shows coverage, as the percentage
of IP addresses for which each tool produced a prediction,
and accuracy (for the addresses inside the coverage), as the
percentage of time each tool selected the same datacenter
as direct measurement latency using ping. We calculated
Turbo King coverage from 645 million probes to random
addresses performed in 2006 [43].

Our results show low accuracy across the tool categories
and a high variation in coverage of the IP address space.
Taken together these results motivate further work on replica
selection mechanisms that combine high accuracy and broad
coverage.

IV. PING THROUGH CDN PROXIES

We propose pcp — a new method for latency approximation
between arbitrary hosts. pcp improves on currently available
tools by achieving the following three design goals:

o Accuracy: pcp’s latency approximation results in more
accurate latency prediction and Internet endpoint selec-
tion than existing tools. pcp is also able to achieve full
coverage of the IP space among participating nodes.

o Scalability: pcp does not require dedicated probing
traffic.

o Maintainability: pcp does not require dedicated mea-
surement infrastructure.

Fig. 1. Network Topology of Hosts and CDNs

A. Architecture

IP2NL estimates latency between hosts based on the shortest
path between them in a virtual topology of the network
built from latency measurements between clients and CDN
servers. These measurements may be obtained though the
passive capture of a client’s Web traffic, from which pcp
extracts latency from the delay of TCP OPEN requests to
CDN servers. In our experiments we direct clients in Dasu
and Seattle Internet testbeds to resolve and probe servers in
several CDNs [33], [34].

pcp then constructs a virtual network graph, in which client
and CDN nodes are connected by weighted edges representing
measured latencies between them. To approximate latency
between two clients in the graph pcp finds the shortest path
between them and sums the edge latencies along the path.

Figure 1 demonstrates the virtual topology of a simple
network containing five nodes and three CDN servers. Graph
edges are client to CDN latency measurements. pcp first
simplifies this graph by calculating the lowest known latency
L between two CDN servers s; and s; as:

L(SZ', Sj) = min(L(si, C) + L(Cv sj))7
cEC’f

where L represents latency between two nodes and C’f is the
set of clients with latency measurements to s; and s;. We
expect (and verify in Section V) that a large set of clients
with measurements to the same to CDN servers will contain
a client c that accurately estimates the latency between the
two servers. Clients are redirected to nearby CDNs based on
their proximity in the network. By contacting an adequately
sized sample of CDNs, clients will select at least a few that
are located nearby in the network. Inter-server latencies may
also be supplied to pcp from external sources, for example
through collaboration with CDN providers.

To estimate the latency between any two clients pcp finds
the shortest path between them in the virtual network graph
and sums the weights of the edges along the path. For example
latency between c; and ¢4 is:

L(er,cq4) = L(cr, 81) + L(s1, 82) + L(s2, s3) + L(s3, c4).

When the virtual network graph is connected then there
exists a path between every pair of clients. In Section V we
show that a connected graph is created in practice even with



a relatively small number of nodes. As the number of nodes
in the graph increases, pcp makes better latency prediction
through more accurate estimates of latency between CDN
servers.

pcp estimates of end-to-end latency can be used for server
selection as well, when these servers collect and contribute
latency measurements to CDN servers. pcp can also be used
for the clustering of nearby nodes through breadth first search
in the virtual network graph.

B. Feasibility

pcp integrates easily with existing Internet infrastructure.
CDN servers are already widely available and well-provisioned
to handle frequent requests from clients. Through passive
observation of client traffic to CDNs pcp collects the latency
measurements for the virtual network graph without introduc-
ing additional probing load.

Two remaining question are how large is the virtual network
graph and where does pcp store it. The size of the graph for
n nodes in the worst case, that is if every node shares a mutual
CDN server with every other node, is equal to:

(g) nodes + 2 (&) +1)

2

Using Dijkstra’s algorithm a latency approximation from one
node to every other node takes:

O((Z)((;;) ), (’;)zg@)

Our current pcp implementation uses a single server, however
we are actively developing a peer-to-peer implementation of
pcp measurement and latency estimation functionality, to
make the storage requirement of the virtual network graph
constant per client. We will make the implementation available
at http://github.com/msu-netlab/pcp.

We believe that reliance of CDN servers, lack of dedicated
probing traffic, and peer-to-peer implementation will make
pcp a self-maintaining and scalable solution. To evaluate
whether pcp also meets its goal of accurate latency estimation
and broad IP coverage we turn to the following evaluation.

edges.

V. EVALUATION

We evaluate pcp on two different data sets provided by
the Dasu and Seattle Internet testbeds [33], [34]. Seattle and
Dasu operate on donated computers, servers, and smartphones.
We were able to access 199 Dasu nodes and make latency
measurements to 5235 distinct CDN servers. Using Seattle we
collected measurements from 152 hosts to 4151 distinct CDN
severs. To obtain a “ground truth” latency measurements for
server selection we pinged Dasu and Seattle nodes from a set
of 42 PlanetLab nodes. For ground truth in node clustering
we obtained all-to-all pings among Seattle nodes. We obtained
latency measurements between Dasu hosts by creating a graph
of Internet routers, from inter-node traceroute measure-
ments, and set latencies between routers as edges. We then
found the network latency between every Dasu host using
Dijkstra’s algorithm to determine the shortest networking path
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Fig. 2. Coverage of pcp for random sets of clients.

through the discovered routers. Data on both testbeds was
collected during a five day period in 2014.

A. Coverage of the IP space

Our first result illustrates pcp’s potential to achieve a
high coverage of the IP space. We ran pcp on differently
sized random subsets of clients in our datasets and calculated
the percentage of clients, to which pcp was able to make
latency estimates. Figure 2 shows a boxplot of our results
based on 20 trials for each set size. The x-axis marks the
size of the random client subsets, while the y-axis shows
the pcp coverage of the set, or the percentage of reachable
nodes from all other nodes in the virtual network graph. We
observe that small client subsets might not have enough CDN
measurements in common to form a connected virtual network
graph. However, pcp’s coverage rapidly improves with larger
number of participating clients. With a high probability of full
coverage at 25 client subset we stop the graph at 60 clients.

Thus even with a relatively small number of participating
clients pcp is able to predict latency for all participating nodes
with high probability. This property makes pcp suitable not
only for large scale deployment as a public service, but also
for inclusion in the code base of applications with a smaller
user base. Of course to participate in a pcp deployment a
node must report its latencies to nearby CDNs — this model
has already been adopted by many NCSs systems and CRP.
However, for applications such as online games, where client-
side code is distributed to clients, clients that join the system
are covered, while without full coverage systems like IP
geolocation databases might simply not be able to estimate
latency for some IPs.

B. Accuracy of latency approximations

We also evaluate the accuracy of different tools at approx-
imating the latency between two hosts in the network. To
calculate the accuracy of pcp, iPlane, and King, we subtract
latency measured with ping, or traceroute from the
latency approximation of each tool. Figures 3 and 4 are CDFs
of accuracy for latency between each client pairing in the
Dasu and Seattle datasets respectively. Correctly approximated
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Fig. 4. Latency estimation accuracy between Seattle clients.

latencies would form a vertical line in the CDF, showing no
difference from the actual measured latency. Data points to
the right of the UDP ping data set are overestimates in latency
while points to the left are underestimates.

pcp is able to approximate latency among 95% of Dasu
clients to within 0.5s and 97% of Seattle clients to within
0.2 s of direct measurement. pcp’s accurate latency prediction
among clients allows for accurate clustering of nearby clients
in peer-to-peer applications. iPlane and King are generally less
accurate and achieve much lower coverage over the IPs in
the Dasu and Seattle datasets. We also found that King’s low
coverage was due to refused recursive DNS queries — King
sent out 94,961 queries and had 76,657 of them refused. The
staggering number of refusals resulted in the low coverage that
is seen with King throughout the evaluation.

We also compare the accuracy of pcp, iPlane, and King in
estimating latency to a set of 42 PlanetLab servers. Figures 5
and 6 are CDFs of accuracy for latency estimation between
each client in the Dasu and Seattle datasets respectively and
the PlanetLab servers.

pcp is able to approximate latency between PlanetLab
servers and 96% of Dasu clients as well as 100% of Seattle
clients to within 0.2 s of direct measurement. pcp’s accurate
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Fig. 5. Latency estimation accuracy from Dasu clients to PlanetLab servers.
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latency prediction between clients and servers allows for
accurate server selection in a variety of interactive Internet
applications. Again, iPlane and King offer much lower cov-
erage. The accuracy of iPlane is comparable to pcp for the
clients for which it can make an estimation. The accuracy of
King is hard to assess due to its very low coverage.

C. Accuracy of endpoint selection

Next, we wanted to understand whether pcp’s accuracy
in latency estimation translates to more accurate selection
of client clusters and servers. We define a cluster of size
n to be the closest n clients to any given client ¢ in the
virtual network graph. For each client ¢ we find the closest
10 clients as determined by latency approximations of pcp,
iPlane, and King. We also include clusters identified based
on geographic proximity from Neustar and cosine similarity
of DNS resolutions from CRP. We then determine each tool’s
effectiveness at choosing clusters as the difference between the
mean latency within clusters identified by approximation tools
and direct latency measurement. We calculate this difference

as:
> izo Lm(c, ci) _ > iz Lm(c, 0i)
n n

)
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where L,, gives the latency between two hosts measured with
ICMP, CTi..n] is the cluster of nodes identified by latency
approximation, and O[i..n] is the set of n closest nodes to ¢
identified by ICMP latency measurement.

Figures 7 and 8 are CDFs of the difference of latency within
clusters of size 10 identified by approximation tools and direct
latency measurement for Dasu and Seattle clients respectively.
Correctly chosen clusters would form a vertical line in the
CDF, showing no difference from the clusters chosen by direct
measurement. We observe that all tools select clusters with
larger intra-cluster latency than direct measurement. The solid
line of pcp selects clusters of comparable, or better accuracy
than the other tools. For 90% of Seattle clients Neustar selects
better clusters than pcp, but we observe that the difference in
marginal and Neustar has lower coverage of IP space as shown
Table I. Although King appears to have identified accurate
clusters, it was only able to identify clusters of size 10 for 4%
of nodes. Overall, pcp’s accurate cluster selection allows peer-
to-peer applications to achieve responsive communications
among interacting peers.

Finally, we analyze the ability of each tool to accurately
select the closest server to a given client. We then determine
accuracy of closest server selection as the difference in latency
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between the closest server identified by the approximation tool
and direct latency measurement. Figures 9 and 10 show CDFs
of the difference in latency between clients and PlanetLab
severs chosen by each tool and direct measurement for Dasu
and Seattle clients respectively.

In general pcp selects PlanetLab servers with error similar
to Neustar and iPlane. For Seattle clients pcp’s accuracy is
slightly lower. Many of Seattle nodes are hosted on PlanetLab
servers themselves. If a Seattle node and PlanetLab server
are in the same subnet, pcp may overestimate their latency
through a nearby CDN server. As part of the future work we
will investigate how prevalent is client and server co-location
and investigate methods for more direct latency estimation for
such cases in pcp. Finally, King’s low coverage prevented it
from making any server selections for Dasu and and only to 7
servers from Seattle clients, and so we do not consider King
in these results.

VI. CONCLUSION AND FUTURE WORK

In this paper we have introduced pcp, a novel method of la-
tency approximation between arbitrary Internet hosts. Through
reliance on widespread and well-provisioned CDN infras-
tructure pcp offers an attractive trade-off between accuracy,



scalability, and maintainability. Through extensive evaluation
on the Dasu and Seattle Internet testbeds we have shown that
pcp achieves better IP coverage and accuracy than currently
available latency estimation tools. We have also shown that
pcp accurately selects closest Internet endpoints in server
selection and client clustering tasks. We believe the pcp’s
accuracy, scalability, and maintainability will help interactive
and real-time applications provide a more responsive service
to their users.

In the future we will explore a peer-to-peer implementation
of pcp to provide an Internet-scale self-maintaining latency
estimation service. A distributed implementation of a latency
estimation system is critical to the longevity of a system,
as well as its responsiveness during sudden surges in client
request rates [21]. One of the key challenges will be to
distribute and keep up-to-date the virtual network graph, such
that latency query overhead and storage overhead in the peer-
to-peer system remains constant. We believe such service will
be useful for server selection and clustering problems in peer-
to-peer systems, as well as multi-cloud application deploy-
ments as the number of publicly available cloud datacenters
rapidly increases. Finally, we are currently forging partnerships
with several CDN operators to obtain more accurate latency
measurements between their servers, which we expect will
improve pcp’s accuracy.
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