Network Optimization with Dynamic Demands and Link Prices

Stacy Patterson, Mike P. Wittie, Kevin Almeroth, and Bassam Bamieh

Abstract— We present Overlapping Cluster Decomposition
(OCD), a novel distributed algorithm for network optimization
targeted for networks with dynamic demands and link prices.
OCD uses a dual decomposition of the global problem into local
optimization problems in each node’s neighborhood. The local
solutions are then reconciled to find the global optimal solution.
While OCD is a descent method and thus may converge slowly
in a static network, we show that OCD can more rapidly adapt
to changing network conditions than previously proposed first-
order and Newton-like network optimization algorithms. There-
fore, OCD yields better solutions over time than previously
proposed methods at a comparable communication cost.

I. INTRODUCTION

Network optimization involves determining an allocation
of resources, most commonly an allocation of data flow to
links, that is optimal with respect to some objective function.
In this work, we address the single commodity network
optimization problem. Namely, there is a single information
flow, e.g. a streaming video conference, and different nodes
have different supply and demand rates for this flow. Each
link has an convex cost function, also called a price, and the
objective is to assign flow to links so as to minimize the total
cost while meeting the supply and demand requirements.

We consider a scenario where link prices and supply and
demand rates can change over time, and the magnitudes and
timings of these changes are not known a priori. Each node
knows the link prices and demands for some local neigh-
borhood for the current time period, or epoch, only. Nodes
can communicate with neighbors within some small, fixed
radius, and each node controls the flow on its outgoing links.
The goal is for all nodes to minimize the total cost of the
flow allocation over time using only local communication. To
achieve this goal, nodes collaborate to converge to the global
optimum for the current network conditions, incorporating
changes in demands and link prices as soon as they are
detected.

We propose a novel distributed algorithm for network op-
timization called Overlapping Cluster Decomposition (OCD)

This work was funded in part by the Arlene & Arnold Goldstein Center
at the Technion Autonomous Systems Program and a Technion fellowship.

S. Patterson is with the Department of Electrical Engineering,
Technion - Israel Institute of Technology, Haifa 32000, Israel,
stacyp@ee.technion.ac.il

M. Wittie is with the Department
Montana State University, Bozeman, MT
mwittie@cs.montana.edu

K. Almeroth is with the Department of Computer Science, Uni-
versity of California, Santa Barbara, Santa Barbara, CA 93106, USA,
almeroth@cs.ucsb.edu

B. Bamieh is with the Department of Mechanical Engineering, Uni-
versity of California, Santa Barbara, Santa Barbara, CA 93106, USA,
bamieh@engineering.ucsb.edu

Science,
USA,

of Computer
59717,

that is targeted for this dynamic setting. OCD enables
rapid reallocation of resources in response to changing flow
demands and link prices. OCD prioritizes fast convergence of
local optimization problems in each node’s neighborhood, or
cluster, that are then reconciled towards the global optimum.
As we show in our evaluations, OCD can more readily adapt
to fluctuations in demands and link prices than previously
proposed distributed optimization algorithms at a comparable
communication cost.

Previous works have proposed gradient type methods for
both primal and dual versions of the network optimization
problem in static networks (e.g. see [1], [2]). While gradient-
based approaches are simple to implement in a distributed
manner, they can result in slow convergence to the optimal
solution [3]. More recently, several distributed Newton-like
algorithms for network optimization and the related problem
of network utility maximization have been proposed. These
works also consider a static network setting. Athuraliya and
Low propose a method to approximate the Newton direction
using a zero'” order Taylor approximation of the inverse of
the Hessian [4]. The recent work by Zargham et al. gives
a more general method, Accelerated Dual Descent (ADD),
that is based on the h*" order Taylor approximation [5].
Wei et al. propose a distributed consensus algorithm to
compute the Newton direction in each iteration of the descent
algorithm [6], [7]. A similar method based on gossiping and
consensus techniques was proposed by Modiano et al. [8].
Finally, Bickson et al. propose a method that uses consensus
rounds to compute the Newton step using the Gaussian belief
propagation [9].

Several works have addressed the problem of network
utility maximization with delivery contracts in dynamic
networks. The delivery contracts are specified as constraints
over time. Therefore, unlike in our setting, the problem can-
not be decoupled into a sequence of optimization problems.
Trichakis et al. [10] present an algorithm finds the optimal
allocation when information about network changes is known
a priori, and they give a heuristic for the setting when this
information is not known. They use a first-order method
based on dual decomposition. The recent work by Wei et
al. [11] presents a faster converging, Newton-based method
that solves the same problem when the dynamics are known
a priori. This full information assumption is in stark contrast
to our assumption that nodes have no knowledge about the
network dynamics.

The remainder of this work is organized as follows. In Sec-
tion II, we formally define the network optimization problem
and provide background on previously proposed solutions for
static networks. In Section III, we present the Overlapping



Cluster Decomposition method. Section IV gives some of
our evaluation results, highlighting the performance of OCD
in dynamic networks. Finally, we conclude in Section V.

II. PROBLEM FORMULATION AND BACKGROUND

We model the network by a directed graph G = (V,€),
where V is the set of vertices (also called nodes), with |V| =
N and & is the set of links, with |£] = M. The network

connectivity is captured by an N x M matrix A = [a;;],
where
1 if edge j leaves node i
a;; =4 —1 if edge j enters node i
0 otherwise.
We divide time into epochs, ¢ = 1,2,.... In each epoch ¢,

a node can be a source that injects flow into the network, a
sink that absorbs flow from the network, or a peer that simply
allows flow to pass through it. The information about the flow
demands is specified by the demand vector b € RY, where
each component b} gives the rate of injection or absorption
at node ¢ for epoch t¢. For source nodes, bg > 0, for sink
nodes, b! < 0, and for peers b! = 0. To ensure that the
network optimization problem is feasible, we require that
> pev b = 0 for all ¢, meaning that, at all times, all flow
injected into the network is also absorbed. In each epoch,
every link e € £ has a strictly convex, twice-differentiable
cost function ¢f(z.) : R — R, where z. denotes the flow
along link e. At any time, each node knows only the its own
value of b! and the cost functions of its adjacent edges for
that epoch. It does not know the duration of the epochs nor
its future demand or link cost functions.

A. The Network Optimization Problem

The objective of network optimization is, for each epoch
t, to find an allocation of rates to the links that satisfies the
injection and demand rates while minimizing the total cost.
The optimal allocation for an epoch ¢ is the solution to the
following optimization problem,

fl) =" ol(xe) )
ee&
Ax = bt (2)

minimize
subject to

The constraints (2) are flow conservation constraints; they
require that the flow allocation satisfies the injection and
absorption specifications given by the demand vector and that
the net flow at each node is 0. We note that the constraints
in (2) are not linearly independent. To remedy this, we can
simply remove any single equation. For the remainder of this
paper, we assume that A and b® have been adjusted in this
respect.

The problem (1-2) involves minimization of a strictly
convex objective function subject to linear constraints. There-
fore, it has a unique solution, and this solution can be easily
obtained in a centralized setting using standard software.
However, we wish to solve this problem in-network in a
distributed fashion. Ideally, the distributed algorithm should
converge to the optimal solution quickly and with as little

communication as possible. In the remainder of this section,
we describe the dual formulation of the network optimization
problem and overview the two classes of previously proposed
network optimization algorithms. As these algorithms focus
on solving the optimization problem within a single epoch,
we omit the superscript ¢ from our notation for clarity.

B. Dual Descent Algorithms

A well-known technique for solving a constrained opti-
mization problem is to instead solve the unconstrained dual
problem. We first define the Lagrangian function for (1 - 2),

Lz, ) =Y delwe) + N (Az - b).

ecé

X € RY are the Lagrange multipliers, one for each constraint
in (2). We then define the dual function,

qg(A) = inf L(z,N)

z€ERM

= inf <Z be(ze) + /\T(Ax)> -2y

rERM
re ccE

_ : T T
= Y inf, (¢e(ze) + AT (Ax)) — ATb. (3)
ecE
Let () be the vector that optimizes (3) for a given \. The
components of z(\) are simply,
E(N)e = (¢0) (i = X), )
where e corresponds to the edge from node 7 to node j. Note
that each x()), depends only on the i and j™ components
of A. Therefore, its value can be computed based on local
information, namely the Lagrange multipliers of the nodes
adjacent to edge e.
Finally, the dual problem can be written as an uncon-
strained convex optimization problem,
maximize g(\). )
The primal problem in (1-2) is a convex optimization prob-
lem. Therefore, the solution to the dual problem (5) has zero
duality gap [12], and the flow rates obtained in (4) for the
optimal solution to (5) are optimal for the primal problem.
Unconstrained optimization problems of the form of (5)
can be solved iteratively using a descent method. Starting
with an arbitrary A(0), subsequent values are generated as
follows,

Ak +1) = Mk) + a(k)d(k), ©6)

where «(k) is the step size and d(k) is the step direction.
Recent works have proposed distributed descent methods for
the dual of the network optimization problem. These methods
fall into two main categories, gradient methods and Newton-
like methods



1) The Gradient Method: In the gradient method, the step
direction is given by the gradient of the objective function
at the current value of A\(k),

a(k) = Vg (\(k)) = Az(k) —b,
where
Z(k) := arg min L (x, \(k)) .

r€ERN

The *" component of d(k) is given by

Yo ode(k)— Y de(k)—bi (D

e=(i,5) e=(J,1)

di(k) =

In the distributed implementation of this gradient descent
algorithm, each node ¢ is responsible for its component of
d(k). As shown in (7), a node can update its component
in a local fashion, using only the components of Z(k) corre-
sponding to its immediate neighbors. Despite their simplicity
and low control messaging overhead in each convergence
round, the subgradient methods are known to suffer from
slow convergence [3].

2) Newton’s Method: An alternative descent method with
faster convergence than the gradient method is Newton’s
method. In Newton’s method, the step direction is the di-
rection which minimizes a quadratic approximation of the
objective at the last iteration [12]. For the dual problem (5),
the Newton step direction in iteration k is

d(k) = = (V> (A(k))) "' Vg (A(R)) ,

where V2¢(\(k)) is the Hessian matrix of the dual function
q at A(k).

To compute the exact Newton step direction, every node
would require knowledge of all dual variables. Several
methods (with similar communication complexity) have been
proposed to approximate the Newton step direction using
only local information [4], [5], [7], [6], [8]. As a representa-
tive example, we consider the recently proposed Accelerated
Dual Descent method (ADD), which has been shown to
converge faster than consensus-based approximate Newton’s
methods [5]. In ADD, in every iteration, each node computes
its step direction using the h'" order Taylor approximation
of the inverse of the Hessian. This computation requires the
node to communicate with all nodes within an (h + 1)-hop
radius.

While the approximate-Newton’s methods offer a marked
improvement in convergence rate over gradient methods,
in Section IV, we show that they do not adjust quickly
to network changes. In contrast, our Overlapping Cluster
Decomposition method converges more slowly than ADD
and other approximate Newton methods when the network
is static but is able to maintain near optimal cost when
the network changes. This benefit is achieved without any
increase in communication cost. We describe the OCD
method in the next section.

Fig. 1: A sample network. The 2-cluster for node 3 is
indicated by the dashed lines. It contains nodes 2, 3, and
4 and edges a, b, ¢, d, e, and f. Note that nodes 1, 5, and 7
and edge g are not included in the cluster.

III. OVERLAPPING CLUSTER DECOMPOSITION METHOD

The motivating intuition behind OCDis that a change in
a network, for example the cost function of a link, affects
resource allocation in a small neighborhood of that link to
a greater degree than the network as a whole. Therefore,
if each node solves a local optimization problem over its
neighborhood, it can maintain a global cost that is close to
optimal by making adjustments only within its neighborhood.
We describe the decomposition of the global optimization
problem into local optimization problems below.

A. Overlapping Cluster Dual Decomposition

In order to formally state the local optimization problems,
we must first define what is meant by local information.
We define the h-cluster of node v as the subgraph CY :=
(VV,E"), where V" is the set of nodes that are strictly less
than h hops away from v, including v, and £V is the set
of links adjacent to the nodes in V", irrespective of link
direction. An example is shown in Figure 1, where the 2-
cluster for node 3 is indicated by the dashed lines. We define
A" to be the matrix formed from the rows and columns of A
corresponding to the nodes and links in C¥. b” is the vector
formed from the components of b corresponding to the nodes
in C¥. A possible local optimization problem is then,

minimize Z de(yl) subject to A%y =b". (8)
e€&v

Here, y” is the flow vector for the cluster of node v, each
component corresponding to the flow along an edge in C.

If nodes solve independent optimization problems like the
one above, they may arrive at different values for the flow
along edges common to multiple clusters. Therefore, it is
necessary to reconcile these local solutions so that nodes
agree on the flow rate for each edge. We can express this
requirement through the following constraints,

ye =z, forveV foreel”?, 9

where y. denotes the component of v’s flow rate vector
corresponding to edge e. These constraints are the coupling
constraints.



With some minor adjustments, we can combine (8) and (9)
to form an optimization problem equivalent to the original
optimization problem (1 - 2). We call this form the Overlap-
ping Cluster Decomposition. We then apply the framework
for dual decomposition described by Samar et al. for convex
optimization problems with a separable objective and cou-
pling constraints [13] to derive a distributed algorithm that
solves the optimization problem.

We first rewrite the coupling constraints (9) as follows,

E’x=9y" forveV,
where each EV = [E}fj] is the |V¥| x M matrix with entries
given by,

v 1
m- ]

The matrix E' is formed by stacking the £V matrices, one on
top of the next. The vector y is formed from the y¥ vectors
in the same manner. The constraint (9) is equivalent to

if constraint y; = x; exists
otherwise.

Er=y.

The network optimization problem can then be expressed
in the following, decomposable form,

minimize Z Z #i(be(yg) (10)
vEVecer ¢

subject to AYy" =b" forallv eV (11)
Ex=y (12)
ye >0 forveV, ecé&”. (13)

Here, #. is the number of clusters in which edge e appears.
We assume that each node knows the network topology a
priori and therefore can independently determine #. for each
edge in its cluster.

The objective in (10) is equivalent to the objective (1). The
constraints in (11) and (12) together are equivalent to the
constraint in (2). The constraints (13) add an additional re-
quirement that all flow rates are non-negative, thus respecting
the directionality of the links. These constraints are optional,
and we note that they do not appear in the formulation of
the problem and algorithm in [5]. Even with the addition of
the non-negativity constraints, the problem is still a convex
optimization problem and therefore has a unique solution.
It is also straightforward to include link capacity constraints
that bound the minimum and maximum flow that can be
assigned to each link, though we omit this extension for
brevity.

The next step is to form the partial Lagrangian with
Lagrange multipliers for the coupling constraints,

L(z,y,7) = > Y, #isbe(yé’HvT(Efv*y)
vEVeegr €
1
=y (Z #—¢>e(y§) - (v”)Ty”>
vEV \ecgv ¢
+~T B,

Each «" is the sub-vector of v corresponding to node v;

each component of +”, denoted ~7, corresponds to an edge
in node v’s cluster.

To find the dual problem, we minimize over x and y
separately. The minimum over = occurs where ETv = 0.
To minimize over y, we define the subproblems ¢”(y"), one
per node,

1
minimize Z —oe(yl) — () y° (14)
7 He
subject to A%y’ = b" (15)
yo >0 foree&. (16)

Each subproblem is a convex optimization problem, and each
node can solve its subproblem locally using any fast convex
optimization method.

Finally, we arrive at the dual problem,

maximize ¢(vy) = Z a’(v") (17)
veY
subject to ETy =0 (18)

In OCD, the dual problem (17 - 18), is solved using a
distributed projected subgradient method. Each node v com-
municates with other nodes in overlapping clusters to learn
the pricing functions ¢, for e € £V. The Lagrange multipliers
are initialized to v(0) = 0. In each iteration k, each node
solves its optimization problem ¢" (y(k)) over its cluster and
communicates with nodes in overlapping clusters to update
v, and then the process is repeated. In a static network, with
the proper choice of step-size, the algorithm is guaranteed
to converge to the optimal solution. The solution to the dual
problem in OCD has zero duality gap (see [12]). Thus, as ~
converges to the optimum, y also converges to the optimal
resource allocation.

In the remainder of this section, we explain the details of
the projected subgradient algorithm and describe how it can
be performed with local communication.

B. Distributed Projected Subgradient Algorithm
In the projected subgradient method, ~ is updated accord-
ing to the following equation,

Yk +1) =P (y(k) + alk)d(k)).

As in the descent methods presented in Section II, a(k) is
the step size. The step direction d(k) can be any subgradient
of ¢q at (k). We use —¢, the vector that optimizes the
subproblems ¢v. P(-) is the Euclidean projection operator,

P(z)= (I —E(ETE)'E") 2
Therefore, the update step is
v(k+1) =~(k) +a(k) (I — E(ETE)'ET) 3. (19

The operator (E7E)~'ET computes average over the 3"
vectors, one average for each edge. Each component of the
step direction is thus equivalent to the difference between ¢
and the average of ¢ for all nodes w with e € £v.



Algorithm 1: OCD with Distributed Projected Subgra-
dient Method, as performed at each node v.
init: £:=0, ~(0):=0
while rrue do
Solve " (v"(k)). ;
g? = argming” (v*(k));
foreach ¢ € £¥ do
/I Choose sending rate for this round. ;
if v is sender for link e then z. := §7;
// Update dual variables. ;
ze 1= average(yy’), over all w with e € £Y;
Ve (k+1) ==~ (k) + alk) (—9¢ + ze);
end
k=k+1;

end

The distributed implementation of (19) is given in Al-
gorithm 1. Each node v maintains a vector of Lagrange
multipliers v¥, each one corresponding to an edge in the
cluster of v. In each iteration, the nodes independently solve
the optimization subproblems ¢”. While each edge belongs
to multiple clusters, we must assign one flow rate to the
physical link. We use the value that is computed at the
sending node for that link. Nodes communicate to find the
averages of their optimal ¢ for each edge. Each node then
updates its vV using these averages. To find the averages,
each node much communicate with nodes in overlapping
clusters. For cluster radius h, OCD requires that, in each
iteration, each node communicate with all nodes within a
radius of 2h — 1 hops.

In general, first order methods like OCD converge more
slowly than Newton-type methods. However, our cluster-
based decomposition makes it possible for local adjustments
to be made within a single round. Therefore, as the network
changes, OCD can quickly reallocate resources to achieve
near-optimal cost. In subsequent rounds, if the network
remains static, the OCD algorithm converges from this near
optimal solution to the optimal flow rate assignment.

C. Accommodating Link and Demand Changes

When the link cost functions or demands change for a
links and nodes in a node’s cluster, the node learns the
new cost functions in the first iteration after the change
when it communicates with nodes in overlapping clusters.
It continues to execute Algorithm 1 using these updated
cost functions and demands and the same values for the
Lagrange multipliers vV as in the previous iteration. If the
cost functions and demands remain fixed for “long enough”,
these Lagrange multipliers will converge to optimal values,
thus yielding the optimal allocation for the current network
conditions.

Note: The optimization methods described in Sections
IT and III are descent methods for the dual problem. There-
fore, until an optimal solution is achieved, the sending rates
will violate the flow conservation constraints (2). If the total

injection rate of a flow allocation exceeds the total absorption
rate, the excess flow will be queued in buffers at nodes
in the network, and buffers that continue to grow result in
increasing end-to-end delays for packet deliveries between
the sources and sinks. In practice, this can be dealt with
by artificially limiting the network capacity and solving the
network optimization problem in the limited network. Thus,
the overallocation in the artificial network does not lead to
overallocation in the actual network. However, this artificial
limitation decreases the overall capacity of the network, and
so, it is desirable that a network optimization algorithm
achieves a solution that satisfies the conservations constraints
as quickly as possible without artificially limiting the link
capacities.

I'V. NUMERICAL RESULTS

Our goal is to evaluate OCD’s effectiveness at solving the
minimum cost forwarding problem in dynamic networks. We
demonstrate that OCD’s emphasis on rapid local convergence
leads to faster adjustments of global resource allocation than
those achieved by the gradient and approximate Newton
methods. These results show that methods like OCD based
on fast local convergence and global reconciliation are an
attractive approach to resource management in dynamic
network settings.

We have implemented the gradient, ADD, and OCD meth-
ods using Matlab and CVX [14]. The convergence rate of the
optimization method depends, in part, on the step size along
their descent directions. Gradient and subgradient methods,
including OCD, converge to within a neighborhood of the
optimum if the step size is sufficiently small [1]. For both
the gradient method and ADD, we use the optimal step size
in each iteration. Note that, in both cases, computation of
this optimal step size would require global information, and
so a distributed implementation would typically rely on an
approximated step size. One would therefore expect that, in
practice, the convergence behavior of ADD and the gradient
method would be worse than shown in our evaluations. We
use a constant step size of two for the OCD method.

We present results of evaluations on two types of networks.
The first is a 40 node unit disk graph, which is generated by
placing the nodes uniformly at random in a unit square and
connecting every pair of nodes within a Cartesian distance
of 0.25 of each other with a bidirectional link. The second is
a 40 node Barabasi-Albert (BA) scale free graph [15], again
with bidirectional links. For both network types, we restrict
our experiments to graphs that are strongly connected and
have diameter of twelve.

In each simulation, six nodes are selected at random
to be sources and six are selected to be sinks. Sink and
source demands are chosen uniformly from the interval
[0.5,1.5] ([—1.5, —0.5] for sinks), normalized so as to ensure
the problem is feasible. The cost function of each link e is
of the form kexz, where k. is chosen uniformly at random
from the interval [0.5,1.5].

For each setting, we give results from a single network
example. We have repeated these experiments on a large



<, -o00gl .
- Gradient- - - ADD-2—— OCD-2|

0 20 40 60 80 10C
Iteration k

(a) Evolution of deviation of the total cost of flow allocation
f(z(k)) from the optimal cost f(&).

0.4F [ Gradient- - - ADD—2I—OCD_3L

|Az®) — b

40 60 80 10C
Iteration &

(b) Evolution of constraints violation.

Fig. 2: Comparison of network optimization algorithms in a
40 node, unit disk graph with fixed demands and link cost
functions.

number of network instances, with different link cost func-
tions and demand distributions and have observed similar
results.

A. Performance in Static Networks

We first present a comparison of the gradient, ADD,
and OCD algorithms in a network with static link prices
and demands. For ADD, we set h = 2, denoted ADD-2.
This configuration means that, for each iteration, nodes
must communicate with all other nodes within a three-
hop neighborhood in each iteration. We compare ADD-2
with OCD-2, which also requires communication within a
three-hop neighborhood. The gradient method only requires
communication with one-hop neighbors. We initialize A and
v to 0.

The results for the unit disk graph are given in Figure 2.
Similar results were observed for the BA graph. Figure 2a
shows the total cost of the solution generated by each
algorithm for each iteration as the algorithms converge to
the optimum, and Figure 2b shows the evolution of the
violation of the flow constraints. Since these methods solve
the dual problem, they begin from an infeasible solution,
with a total allocation cost that is lower than optimal. As the
methods progress, the constraints violations are reduced and
the total cost is increased. As expected, the Newton-based
ADD method demonstrates the fastest convergence behavior.
We note that even though OCD is a gradient-based scheme,
it outperforms the standard gradient method. In addition, by
optimizing within clusters, OCD achieves significantly better
results in the first few iterations than both ADD and the
gradient-based method.

& 002 P -
",\ L
| AL i
i oh e ____\,I/.;H,r..--?‘\/",____
= VT V‘I\‘O‘H
= - ! ‘
ood ... Gradient- - - ADD-2 — CD_?

0 20 40 60 80 10C
Iteration k&

(a) Evolution of deviation of the total cost of flow allocation
f(z(k)) from the optimal cost f(&).

0. : : :

_ | Gradient- - - ADD-2—— OCD-

< { i

! ] \ !

= 0.1¢4 A .'" ; ,'; ;
= |u 1 23 N N

I A N N

0 20 40 60 80 10¢

Iteration &

(b) Evolution of constraints violation. For the gradient method, the
total of the constraints violation ||Az(k) — b|| over 100 iterations
is 1.7905. For ADD, it is 1.0191, and for OCD it is 0.2120.

Fig. 3: Comparison of network optimization algorithms in
a 40 node, unit disk graph with fixed demands, where link
prices change in every 20 iterations.

B. Performance with Dynamic Link Costs

We compare the abilities of the gradient method, ADD-2
and OCD-2 to adapt to changing link cost functions. We first
let the algorithms converge to the optimal solution for the
initial network configuration. We then alter the constant k.
in each link cost function every 20 iterations by choosing a
new value uniformly at random from the interval [0.5, 1.5].

In Figure 3, we show the results for the unit disk graph
and in Figure 4 we show results for the BA graph. Each
figure shows 100 iterations after the convergence to the initial
solution. Both the gradient method and ADD are significantly
disturbed by link cost perturbations as shown by the large
spikes in the deviation from the optimal cost (Figures 3a and
4a) and in flow constraints violation (Figures 3b and 4b).
OCD is less affected by the changes in link costs. In OCD
the decomposition enables the nodes to adjust to changes
within their clusters within a single iteration. Therefore, OCD
achieves a great reduction in the level of constraints violation
almost immediately, while the gradient method and ADD
require multiple iterations to a achieve similar reduction.
Thus the overall performance of OCD is better than that
of ADD in spite of OCD’s slower convergence rate.

C. Performance with Dynamic Demands

We now present results on the performance of the algo-
rithms in networks with changing source and sink demands.
We run the algorithms in a 40 node BA graph with a random
initial selection of six sources and six sinks until all solutions
converge to the optimal. We then change the locations and
magnitudes of the sources and sinks every 20 iterations. The
results for 100 iterations after the initial convergence are
shown in Figure 5.



&
S
|
= - Gradient- - - ADD-2—— OCD-2
0% 20 40 60 80 10¢

Iteration k

(a) Evolution of deviation of the total cost of flow allocation
f(xz(k)) from the optimal cost f(&).

0 20 40 60 80
Iteration k

100

(b) Evolution of constraints violation. For the gradient method, the
total of the constraints violation ||Ax(k) — b|| over 100 iterations
is 7.0228. For ADD, it is 4.5193, and for OCD it is 2.0954.

Fig. 4: Comparison of network optimization algorithms in a
40 node, BA random graph with fixed demands, where link
prices change in every 20 iterations.

For all three methods, the deviation from the optimal cost
and the constraints violation are significantly larger than for
the dynamic link prices setting. The gradient method shows
a large deviation from the optimal cost resource allocation as
it changes over time (Figure 5a). ADD produces a better cost
allocation, but it is still outperformed by our OCD method.
Also as before, there is a spike in the constraints violation
for all three methods when demands change (Figure 5b).
The spike for OCD is smallest and shows that OCD arrives
at a solution that is closer to feasible than both the gradient
method and ADD in just a few iterations. We have observed
similar trends for the setting where source and sink locations
remain fixed and only the demand magnitudes change, but
in this setting, the observed cost deviations and constraints
violations are slightly smaller.

D. Effect of Communication Range

Finally, we explore the effect of different communication
ranges on the convergence behavior of ADD and OCD.
Table I shows results for the ADD and OCD methods in
a 40 node BA graph where the algorithms are configured
to communicate with the same number of nodes per round.
We first let the network converge from its initial config-
uration until the total constraint violation ||Az(k) — b]| is
less than 0.001. We then change the link cost functions
change every 10 iterations (as described in Section IV-A).
The second column gives the radius of the communication
neighborhood for each algorithm. Columns three and four
show the total flow constraints violation and total difference
of the forwarding cost from the optimum over 200 iterations
after the initial convergence. The table shows that the total
flow constraints violation is significantly lower for OCD for

Rl T Gradient- - - ADD-2—— OCD-2|
S »
‘ AN
S e |
S~ -1 , s - , \ i
0 20 40 60 80 10C

Iteration k

(a) Evolution of deviation of the total cost of flow allocation from
the optimal cost.

A N Gradient- - - ADD-2—— OCD-2
~ 3 3 R
T ; \ ;
Hos A T & 1
R N b S N AN

0 e U — . ~

0 20 40 60 80 10

Iteration &

(b) For the gradient method, the total of the constraints violation
|| Az (k) —0b]|| over 100 iterations is 38.6967. For ADD, it is 26.2122,
and for OCD it is 13.7524.

Fig. 5: Comparison of network optimization algorithms in a
40 node, BA graph with fixed link prices where source and
sink locations and magnitudes change in every 20 iterations.

TABLE I: Effect of communication distance on constraints
violation and allocation cost for a 40 node BA graph where
link prices change every 10 iterations. Columns three and
four give the totals over 200 iterations.

Comm. Total Total

Radius | [|[Az(k) —b|| | |f(z(k)) — f(2)]
OCD-2 3 3.24 0.56
ADD-2 3 9.90 0.26
OCD-3 5 1.92 0.58
ADD-4 5 10.30 0.60
OCD-4 7 0.80 0.25
ADD-6 7 9.24 1.74
OCD-5 9 0.04 0.02
ADD-8 9 7.82 0.08

all the listed communication ranges. OCD also has a smaller
value for the sum of the absolute value of the deviation of
the cost from the optimal over time for all but the smallest
communication range. We have observed similar trends with
different graph configurations and in the dynamic demand
setting. We note that a smaller cost deviation total does not
necessarily mean that the total cost is lower. In addition,
if the cost for an iteration is lower than the optimum, the
allocation for that iteration is an overallocation, and excess
flow is being stored in buffers in the network. As stated
in Section III, the increasing buffer size is detrimental to
network capacity. Therefore, it is important that both the
deviation from the optimal cost and the magnitude of the
constraints violation be small.

The results is this section demonstrate that OCD is more
effective than both the gradient method and ADD in networks
with changing link prices and source and sink demands.



The fast re-convergence of OCD in the initial iterations
after a change in link prices or demands leads to lower
aggregate allocation cost and constraints violation, in spite
of the lower convergence rate observed in the static network
scenario. This is an important observation because it shows
that the emphasis on local convergence and approximate
global reconciliation has the potential to achieve better global
performance in dynamic networks than methods that approx-
imate the global descent direction from local information.

V. CONCLUSION

In this paper we have presented OCD, a novel method
for network optimization. Instead of solving the global
optimization problem through local exchanges, OCD uses
a dual decomposition of the global problem into local opti-
mization problems in each node’s neighborhood. As shown
in our evaluations, in networks where link prices and supply
and demand fluctuate, OCD can adapt more rapidly than
previously proposed distributed optimization algorithms at
a comparable communication cost. In future work, we plan
to explore the extension of our decomposition approach to
the multi-commodity network optimization problem and to
settings where some properties of the network dynamics are
known in advance.

REFERENCES

[1] X. Lin and N. B. Shroff, “Joint rate control and scheduling in multihop
wireless networks,” in Proceedings of the 43rd IEEE Conference on
Decision and Control, 2004, pp. 1484-1489.

[2] A. Eryilmaz and R. Srikant, “Joint congestion control, routing, and
MAC for stability and fairness in wireless networks,” IEEE Journal
on Selected Areas in Communications, vol. 24, no. 8, pp. 1514-1524,
August 2006.

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

A. Nedi¢ and A. Ozdaglar, “Approximate primal solutions and rate
analysis for dual subgradient methods,” SIAM Journal on Optimiza-
tion, vol. 19, no. 4, pp. 1757-1780, February 2009.

S. Athuraliya and S. Low, “Optimization flow control with newton-
like algorithm,” Journal of Telecommunication Systems, vol. 15, pp.
345-358, 2000.

M. Zargham, A. O. Alejandro Ribeiro and, and A. Jadbabaie, “Accel-
erated dual descent for network optimization,” in Proceedings of the
American Control Conference, 2011, pp. 2663-2668.

E. Wei, A. E. Ozdaglar, and A. Jadbabaie, “A distributed newton
method for network utility maximization,” in Proceedings of the 49th
IEEE Conference on Decision and Control, 2010, pp. 1816-1821.
——, “A distributed newton method for network utility maximization,”
LIDS, Tech. Rep. 2832, 2010.

E. Modiano, D. Shah, and G. Zussman, “Maximizing throughput in
wireless networks via gossiping,” SIGMETRICS Performance Evalu-
ation Review, vol. 34, no. 1, pp. 27-38, June 2006.

D. Bickson, Y. Tock, A. Zyrnnis, S. P. Boyd, and D. Dolev, “Dis-
tributed large scale network utility maximization,” in Proceedings of
the 2009 IEEE international conference on Symposium on Information
Theory, 2009, pp. 829-833.

N. Trichakis, A. Zymnis, and S. Boyd, “Dynamic network utility
maximization with delivery contracts,” in Proceedings of the IFAC
World Congress, 2008, pp. 2907-2912.

E. Wei, A. E. Ozdaglar, A. Erylimaz, and A. Jadbabaie, “A distributed
newton method for dynamic network utility maximization with de-
livery contracts,” in Proceedings of the 46th Annual Conference on
Information Sciences and Systems, 2012.

S. Boyd and L. Vandenberghe, Convex Optimization.
University Press, 2004.

S. Samar, S. Boyd, and D. Gorinevsky, “Distributed estimation via dual
decomposition,” in Proceedings of the European Control Conference,

2007, pp. 1511-1516.
M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex

programming, version 1.21,” http://cvxr.com/cvx, April 2011.
R. Albert and A.-L. Barabdsi, “Statistical mechanics of complex
networks,” Reviews of Modern Physics, vol. 74, pp. 47-97, 2002.

Cambridge



