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Abstract—Mobile applications may want to offload heavy pro-
cessing jobs to more powerful nodes. Mobile Edge Comput-
ing (MEC) can provide low latency and fast processing for the
offloaded jobs. Due to the limited capacity of MEC, an efficient
checkpointing mechanism can provide fair resource sharing among
offloaded jobs by interrupting them as necessary. It is important
for an MEC controller to decide when to start checkpointing based
on the resource availability and the number of queued requests.
In this paper, we propose a resource management framework
that decides when to start checkpointing to utilize the MEC
compute resources efficiently. We also show how we can integrate
the proposed framework in practical implementation of an MEC
architecture.

Index Terms—MEC, Serverless, checkpointing

I. INTRODUCTION

The significant growth of mobile technologies brings more
complex mobile applications. These applications may need
to process rich sensor data on an ongoing basis. The speed
of computation in mobile devices is limited by low device
processing power and limited battery capacity. Consequently,
mobile applications may want to offload computation-intensive
data processing jobs onto more powerful nodes, such as cloud
servers, to provide faster response times. We define an offloaded
job as a long running process supporting multiple low-latency
mobile application requests. However, offloading to the cloud
brings its own problems. Though the cloud provides greater
computational resources, the network latency to the cloud may
erode the benefits of faster job execution. So, cloud servers
may not help to speed up response time for all latency sen-
sitive offloaded processing jobs. Another computing platform,
Mobile Edge Computing (MEC), which is deployed in network
proximity to users, is an option to handle latency sensitive
processing jobs, offloaded by mobile devices. This deployment
improves processing speed, but does not incur as much latency
as the cloud. MEC has higher computation capacity than mobile
devices, but lower than cloud, and so the opportunity offload
onto MEC nodes remains constrained.

Future cellular networks will rely on software-based network
traffic processing at Base-band Units (BBUs). BBUs can allow
MEC function to use the spare compute resources for on-
demand computation service [1]-[3]. However, a BBU will need
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MEC jobs to free up resources when network traffic surges.
Moreover, an MEC node may receive more offloaded jobs than
it has the capacity to handle concurrently and queue them for
when resources become available. An offloaded job may require
computation resources for a long period of time to support
multiple low-latency mobile application requests. As a result,
the jobs waiting in the queue can experience starvation. So,
MEC needs efficient mechanisms to provide fair sharing of
computation resources among all jobs. To enforce fair sharing
of computation resources, MEC needs to limit the run-time of
any offloaded job in each execution period either predictably,
or urgently in response spiking BBU demand.

To limit the runtime of an offloaded job, tools such
as MicroLambda (uA) [4] and Checkpoint/Restore In
Userspace (CRIU) [5] can suspend a process by checkpointing
its state to disk. Consequently, an MEC scheduler can migrate to
resume the job to a different MEC node, or wait to resume it on
the same node. However, creating and transfering a checkpoint
takes time. The checkpointing processing time varies between
checkpointing tools, job types, and job execution points. So,
MEC needs to know when to start checkpointing before the
assigned runtime of a job runs out. Otherwise, the MEC
scheduler may start checkpointing early, which will lead to
underutilization of runtime, or may fail to finish checkpointing
before the runtime ends, which will lead to waste of the assigned
computation time. Consequently, it is not clear to the MEC node
when to start checkpointing without knowing the duration of
checkpointing for the current execution state of each job.

In this work, we present a prediction model, called
Penalty-based Multiple Linear Regression (PB-MLR), to esti-
mate job checkpointing duration to decide when to start check-
pointing. We develop the model using Multiple Linear Regres-
sion (MLR), for which we define a custom cost function. We
show how the PB-MLR reduces the number of late checkpoint
occurrences and reduces the computation waste resulting from
early checkpoints.

We create the model online to learn from every checkpoint
creation. We integrate the proposed learning process in the
existing puA architecture. We show how the proposed online
model learns from pA program checkpointing state information
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and corresponding checkpointing duration after checkpointing
attempt and reduces the resource waste over the time.

The rest of this paper is organized as follows. Section II pro-
vides the background on pA. Section III presents related work
on checkpointing mechanisms and migration. In Section IV, we
outline the proposed PB-MLR to predict checkpointing duration
and in Section V we present performance evaluation of the
PB-MLR. Finally, we conclude in Section VI.

II. BACKGROUND

To ground further discussion in a concrete system model, we
start with background on MicroLambda (uA) and checkpoint
penalty scenarios absent from the original p\ paper [4].

A. MicroLambda

MicroLambda (uA) [4], [6] is a checkpointing method to
partition offloaded application execution across consecutive
runtimes. uA dynamically splits stateful and long-running com-
putation across multiple serverless function invocations on edge
compute nodes. pA dynamically inject checkpointing code at the
current line of an offloaded Python process. After the injection,
the offloaded process creates a checkpoint and uploads it to the
database before terminating. pA then restarts the process from
the checkpoint at the same, or a different edge node. Compared
to the other state of the art checkpointing methods such as
Checkpoint/Restore In Userspace (CRIU) [5], uA needs less
time to create a checkpoint and less memory to store it because
uA only serializes the internal states of the process.

Figure 1 shows how A manages computation offloading. We
will talk about the blue arrows and texts in Section IV-B. In
step 1, Client sends an offloading request to the Redis database
deployed on edge device such as a BBU node. In step 2, Redis
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Fig. 1: Messaging and coordination process of pu\ [4] shown in
black; updated dynamic checkpoint initiation shown in blue.

database notifies the manager node to perform the computation
job by sending function f. In step 3, the Manager node enrolls
one or more worker nodes to install the A(f), a serverless f
function if it has not been installed already. After enrolling, the
Manager invokes the lambda function on the Worker in step 4.
The Worker node runs A(f) until 7,4, checkpoints the job,
and uploads the state information to Redis shown in step 5.
In step 6, Redis notifies the Manager, and the Manager again
invokes the lambda function on the same or different Worker
node. The Worker node loads the previous state information
to resume the execution from the last checkpoint. When the
execution of an offloaded job is done that means the entire job
is done, the Redis notifies the Client of the finished computation
with output o shown in step 7.

B. MicroLambda Penalty Scenarios

Figure 2 shows the early and late checkpoint penalty sce-
narios, where tgtqr+ and t.,q are the start time and end
time of the checkpointing. The time to make a checkpoint is
tend — tstare- Figure 2a shows the scenario of early checkpoint
where 7;mit — teng amount of time is resource non-utilization
because of early checkpoint. Figure 2b shows the late check-
point scenario, where the runtime terminates before completing
checkpointing. As a result, the task needs to run from the
previous checkpoint if there is any; otherwise, it needs to start
from the beginning. So, computation resource used by the job
for ;¢ duration will be wasted.

Tlimit
A

Tlimit

—

tstart tend

—

tstart tend

(a) Early checkpoint (b) Late checkpoint

Fig. 2: Checkpointing penalty scenarios.

By default, u\ checkpoints A(f) at time 7;,,;: — ¢ where ¢
is a constant estimate of the checkpointing duration. We will
discuss how we find the static checkpointing duration in Sec-
tion V-A. p A assumes c is a value large enough to preclude late
checkpoint scenarios. However, ¢ may not eliminate computa-
tion wastage. In the evaluation section, we will demonstrate
that a static checkpoint time does not eliminate the penalty
resulting from early checkpoints, nor does it fully eliminate late
checkpoints, because the different execution points of a program
may have a different memory footprints, interpreter stack size,
and variable state. So, it is important to know when to inject
the save_checkpoint () function to the Python program, so
that the pA can utilize the 7;,,;; without wasting assigned
computation resource.

III. RELATED WORK

uA offers low overhead application checkpointing to load
balance and migrate jobs between different MEC nodes. Load
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balancing is necessary to provide fair resource sharing in the
MEC system, because MEC has limited computation resources.

Researchers work on load balancing in many different fields
such as operating system [7], [8], cluster system [9], cloud
system [10], [11] to provide runtime load balancing and fault
tolerance. PB-MLR is related to both load balancing and mi-
gration decisions for providing fault tolerant services.

Many methodologies have been proposed to predict future
unexpected failures and checkpoints before faults occur. Li et al.
presented an adaptive fault management method where they
make migration and checkpointing decision based on failure
prediction for cluster computing using cost-based evaluation
algorithm [12]. Frank et al. proposed an iterative checkpointing
algorithm to calculate the interval for jobs to improve the check-
pointing intervals rate [13]. In all methods, the authors assume
that they will have enough time to complete checkpointing,
and that a fault cannot occur in the middle of checkpointing
operation. Even in operating systems, the designers developed
the checkpointing architectures in such a way that the check-
pointing, or interrupting a process to facilitate other process to
use the computation resource will be an uninterrupted process.
After a successful checkpointing of a process, other process will
get the chance to execute [14], [15].

Job migration prediction forcasts when the job needs to
transfer. In general, checkpointing a VM, a container, or the
OS process does the migration process. Duggan et al. devel-
oped a model to predict bandwidth usage and CPU utilization
of live migration using Artificial Neural Network [16]. Mo-
taki et al. proposed a model to predict additional CPU usage
for VM migration, average power consumption, VM downtime
using different regression models such as Ridge Regression,
support vector regression, and K-nearest neighbors regression
to improve the live migration by reducing violation, occurs
when the host cannot obtain the required CPU capacity [17].
Majeed et al. introduced an offloading technique for container
migration “Save and Load”, where the authors used CRIU [5]
for checkpointing and used Multivariate Linear Regression,
Polynomial Multivariate, Random forest, and Support Vector
Regression to estimate the offloading time for migration after
checkpointing [18].

While both VM and container migration are efficient at
checkpointing and migrating groups of processes, the overhead
of checkpointing the VM or container is significantly higher
than that of the process checkpointing in pA [4]. Moreover, the
methods we discussed above do not predict the checkpointing
duration to decide when to start checkpointing within a limited
runtime. These predictive methodologies use an offline dataset
to develop the model, which is not practical for MEC architec-
ture because the system needs to wait a significant amount of
time to build a model, while making uninformed checkpointing
decisions in the meantime.

IV. CHECKPOINTING PREDICTION FRAMEWORK FOR
MICROLAMBDA ()

We extend the pA framework by integrating a checkpointing
prediction framework to utilize the ry;,;; efficiently. In this
section, we present our proposed model that analyzes a job’s
behavior, such as memory footprint, interpreter stack size, and
current execution time, and predicts the checkpointing duration.
The model helps puA checkpoint offloaded programs efficiently
and reduces penalty discussed in Section II-B.

A. Penalty-based Multiple Linear Regression (PB-MLR)

We use multiple linear regression (MLR) to develop our
proposed framework PB-MLR. MLR is a model that assumes
that the output variable and each independent variables have
linear relationship and uses multiple independent variables to
predict the output variable. To create the model, we must fit a set
of parameters. One way to fit these parameters is to minimize a
cost function using gradient descent [19]. MLR with a standard
cost function (Standard-Cost MLR) tries to fit a line to reduce
the error between observed and predicted data. The standard
cost function of MLR is:

1 =n
cost = - ; d? (1)
d; = yli] = gld] 2)

where, y[i] and §[i] are the observed and predicted time respec-
tively. When ¢[i] is lower than y[i], then late checkpoint occurs.
Otherwise, early checkpoint occurs, shown in Figure 2. Figure 3
gives an example of the best fit line of MLR for two different
cost scenarios. As shown in Figure 3a, the Standard-Cost MLR
equally penalizes early and late checkpoints. However, for pA,
we modified the Equation 2 to reduce the number of late
checkpoints and the gap between observed and predicted data
as follows. Let e[| be the current execution time,
0 {ym — gl if 4[] > yli]
gli] + e[i], otherwise

When a late checkpoint occurs, pA will fail to complete the
checkpointing. As a result, we need to redo the computation
from the previous checkpoint. So, we set the penalty equal to the
total computation time wasted, which is the summation of e[i]
and §[¢]. We use the standard cost equation Equation 2 for early
checkpoint to reduce the error between predicted and observed
data. The proposed cost function tries to reduces the number of
late checkpoints and also reduce the distance between predicted
and observed values for early checkpoint shown in Figure 3b.

MLR with the proposed penalty-based cost function reduces
the number of late checkpoints and also reduces the gap between
predicted and observed data for early checkpoint. We choose
linear regression instead of the polynomial regression because
the linear regression shows a better R? score. R? score is used to
evaluate the performance of regression based machine learning
model. For our dataset, we use leave one out cross validation

3)
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Fig. 3: Penalty scenarios for Standard-Cost MLR vs. PB-MLR
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and linear regression shows R? score 0.78 4= 0.14 compared to
the n-degree polynomial regression where n > 1. The R? score
of the polynomial regressions are below 0.65.

We use program memory usage, interpreter stack size, current
execution time as input features to develop the PB-MLR model.
We select the input features by identifying multicollinear-
ity [20]. Multicollinearity occurs when the input features are
correlated. We select the input features using p-value and
Variance Inflation Factor (VIF) to reduce the multicollinearity.
Higher VIF and p-value indicate strong correlation in the
input features. The input features we select which are program
memory usage, interpreter stack size, current execution time
show VIF and p-value are low. That means the input features
are not highly correlated. So, we can use these input features
to develop PB-MLR model.

B. Online Learning Framework

Our other goal is to integrate PB-MLR with pA. Initially,
the deployed job does not have any labeled information. So,
we initialize our proposed model as online where at each
checkpoint, we update the model based on observed data. At the
beginning, the proposed online model may predict inaccurate
checkpointing duration. Over the time, the model will evolve
with more data points and will try to reduce the cost based on
the proposed cost function.

In Section II-A, we discussed A messaging and coordination
process shown in Figure 1. The blue arrows and texts depicts
how we integrate the online learning into puA. After invoking the
function A(f) in step 4, the Manager node tracks the jobs and its
resource usage to predict checkpointing duration using proposed
model. Based on the predicted value from our proposed model,
the Manager decides when to start checkpointing and send the
checkpointing request to the Worker node shown in step 4.1.
The Worker node checkpoints the job using puA’s dynamic
program checkpointing, terminates the job and saves the state
to Redis. In step 6, Redis notifies the Manager, which continues
the execution by resuming the A(f) from the checkpoint saved
in step 5, now with s; as the starting state. Redis also notifies the
Manager the observed checkpointing duration and the proposed
model learns from the new observed data shown in step 6.1.

We develop the data monitoring tool inside of the Man-
ager node using Python libraries: py-Spy [21] and Memory
Profiler [22]. We use these two libraries to get the infor-
mation since pA uses Python Interpreter Stack size and state
of the variables to predict a checkpoint. Py-Spy is a sampling
profiler to provide information about where a Python program is
spending time without modifying the program or restarting the
program. It looks at the global PyInterpreterState variable
of a program to get all the Python threads running in the
interpreter and iterates each PyFrameObject in each thread to
figure out the call stack. We extract the call stack information,
including the stack size. Memory Profiler [22] is a Python
tool to monitor the memory usage of a program. We use time-
based memory usage, where we get the memory usage of a
program. When the Manager needs to make a checkpoint, the
Data Monitoring Tool gathers these data which are used as an
input of the proposed model.

V. EVALUATION

The goal for our evaluation is to show the practical integration
of the PB-MLR with pA and how the waste of 7;,,;+ can be
reduced. We want to evaluate the accuracy of uA checkpoint
prediction mechanism to support different types of edge com-
puting workloads without wasting computation time. We have
used the same p architecture [4] and the same three workloads,
Face Recognition, Ride hailing and Stress classification repre-
senting different classes of computation suitable for offloading
to edge computing nodes. puA has the facilities to inject the
checkpointing code to pause the process when needed. We want
to see how PB-MLR works for those applications if we integrate
PB-MLR in pA architecture.

A. Competing Solutions

We compare the proposed PB-MLR framework’s perfor-
mance to the existing MLR technique, which we are calling
Standard-Cost MLR. Standard-Cost MLR uses the Equation 2
cost function to reduce the distance between the predicted and
observed data points. We compare the PB-MLR framework with
the static value as a checkpointing duration. The previous pA
uses static checkpointing duration. Though the static value is
hard to guess without analyzing the data, we assume a suitable
system chooses the best static value as a checkpointing duration.
We define such a suitable as a constant value with minimum
lost computation by analyzing the offline dataset generated after
series of executions.

B. Results

To understand the performance of PB-MLR, we compare it
to Standard-Cost MLR and static checkpointing. Specifically,
we measure the efficiency of PB-MLR in terms of range of
checkpointing duration, percentage of early and late checkpoint
occurrence and the total lost computation for different applica-
tions.
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1) Checkpoint time: Figure 4 shows the evaluated applica-
tions on the x-axis and the time in seconds to create a checkpoint
on the y-axis. We measure checkpoint time by subtracting
the time at which we start the checkpointing process from
when a checkpoint is produced on the file system. The light
grey boxplots depict the observed checkpointing duration. The
grey and black boxplots depict the estimated checkpointing
duration of Standard-Cost MLR and the proposed PB-MLR,
respectively. Each box plot depicts the distribution of 100
checkpoint durations, taken at random times during application
execution. The dotted horizontal line shows a suitable static
checkpointing value. We find the suitable static checkpointing
by iterating over a fixed set of static values to calculate the total
lost computation on every application. The static checkpointing
which shows low total lost computation compared to the other
static checkpointing values is the suitable checkpointing value.
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------- Static

o
o
o
=
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Checkpointing time (sec)
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Fig. 4: Checkpointing duration.
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In general, we observe that for all applications the prediction
range of Standard-Cost MLR is close to the actual checkpoint-
ing duration. As a result, there might be a high possibility
to start the checkpointing process late since the objective of
Standard-Cost MLR is to reduce the residual sum of squares
between the observed and targets in the dataset. On the other
hand, the proposed PB-MLR predicts a higher value than the
actual time to avoid a late checkpoint scenario. The static value
is higher than the actual time and also higher than PB-MLR
upper quartile.

2) Percentage of early and late checkpoint occurrences:
Figure 5 shows the evaluated applications on the x-axis and
the percentage of early and late checkpoint prediction on the
y-axis. We consider a predicted checkpointing duration early
if the predicted value is greater than or equal to the observed
checkpointing duration; otherwise, we consider the checkpoint-
ing duration as late. The dark grey and light grey with diagonal
line pattern show the early and late checkpoint of the PB-MLR
in percentage, the solid black and grey with cross pattern series
show the early and late checkpoint of the Standard-Cost MLR in
percentage, the slate grey and gainsboro grey with dotted pattern
show the early and late checkpoint of the static checkpointing
respectively. Each stacked bar plot illustrates the percentage of
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Fig. 5: Percentage of lost computation

predicted early-late checkpoint at random application execution
duration to produce checkpoints at different points in application
execution. In general, we observe that for all applications, the
PB-MLR generates less than 7% late checkpoint compared to
Standard-Cost MLR. The percentage of the early checkpoint
scenario for face recognition, ride hailing and stress classifica-
tion applications are 99.46%, 94.5%, and 98.14%, respectively.
Though the static checkpointing shows less late checkpoint
percentage than Standard-Cost MLR, static checkpointing has
higher late checkpointing percentage compared to PB-MLR.
3) Lost Computation: Figure 6 shows the evaluated applica-
tions on the x-axis and the total amount of lost computation in
seconds because of early and late checkpoint on the y-axis. We
calculate the total lost computation using Equation 3. The lost
computation for early checkpoint prediction is the difference of
predicted and observed time, and the lost computation for late
checkpoint prediction is the sum of current execution time from
the start and predicted time. The light grey, grey and black bars
show the total lost computation for Standard-Cost MLR, Static
checkpointing and proposed PB-MLR, respectively. Each bar
plot illustrates the distribution of 100 checkpoints made after
random application execution duration to produce checkpoints
at different points in application execution. For every applica-
tion, Standard-Cost MLR shows higher total lost computation
time compared to the other methods. Though static checkpoint-
ing shows better performance than Standard-Cost MLR, it has
the higher total lost computation than PB-MLR because the
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Fig. 6: Total amount of lost computation in seconds
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static value does not provide any guarantee to reduce the number
of late checkpoint without analyzing the application’s current
execution state.
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Fig. 7: PB-MLR online learning performance.

4) Online Learning Performance: We worked with the fully
trained model from a series of observed data in the previous
analysis. Now, we want to see an online learning model using
PB-MLR improves with the number of samples. Figure 7 shows
on the x-axis number of data points the model learns from,
and the y-axis the ratio of resource waste to execution time.
We calculate resource waste using the sum of Equation 3 and
online learning execution time. Each line plot describes the
average of resource waste in 50 trials of data for each x-axis
point when checkpointing after a random execution duration.
In general, we observe from the graph that the model initially
produces inaccurate prediction, which results in higher lost
computation higher ratio of resource waste to execution time.
Eventually, when the model gets new data and learns from state
information and corresponding checkpointing duration, the lost
computation declines significantly, which indicates the model
produces fewer late checkpoint for all the applications. As every
application has a different execution time and learning time, the
lost computation varies because the lost computation depends
on the current execution time for late checkpoint. Overall, the
results show the online learning learns quickly and improves
the prediction after learning from only a few checkpoints. It is
a practical way to implement on A because initially the newly
deployed applications do not have observed information.

the results will improve the performance of pA and can provide
VI. CONCLUSIONS

In this paper, we showed a framework to predict check-
pointing time to limit the runtime of an offloaded job in each
execution period. We also illustrated the practical implementa-
tion of integrating the proposed framework with the dynamic
checkpointing mechanism — MicroLambda (u\) using online
learning. We depicted the results where the proposed framework
reduces the waste of MEC compute resources compared to the
default pA setup. We also show the performance of the online
learning setup for integrating existing A architecture. We show
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