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Abstract—Blockchain transactions compete for limited space
in blockchain blocks. Miners prefer to include transactions with
higher fees into new blocks. In the context of Ethereum, gas
price price oracles predict fees such that transactions submitted
at those fees make it into a block within a target delay. In practice,
however, oracles are not accurate, which makes it difficult for
distributed applications to operate predictable services in terms
of price and performance.

To understand oracle performance we define a new gas pre-
diction accuracy metric. We demonstrate that oracles underprice
transactions, causing them to miss the delay target, as well as
overprice transactions, causing them to meet the delay target,
but at a higher than necessary cost. We provide comparative
analysis of five gas price oracles showing their relative accuracy,
transaction accept rates, price stability, and discuss factors that
influence oracle accuracy. We observe that the ETHGasStation
oracle produces the most accurate and stable price predictions.
For users that prefer to run their own oracle Web3.py provides
comparable performance.

Keywords—blockchain, transaction fee, transaction delay, gas
price oracles

I. INTRODUCTION

Blockchain throughput, in terms of transactions per second,
is fundamentally limited by the time it takes to disseminate and
validate new blocks [1]. To ensure fair sharing of blockchain
resources and provide incentives to miners to validate trans-
actions, the inclusion of a transaction into a block requires a
fee. These fees, however, are volatile as a result of changes in
transaction volume [2] and cryptocurrency price [3], [4].

In the context of Ethereum a transaction fee is the amount of
gas spent by a transaction on operations within the Ethereum
Virtual Machine (EVM) multiplied by the gas price specified
in the transaction. Gas price is also loosely correlated with
how long it takes for a transaction to be accepted into a new
block, as miner implementations prefer to include higher price
transactions in new blocks to maximize block rewards [5].

To help blockchain users submit transactions that enter the
blockchain within some expected time and at a reasonable
price, gas price oracles provide gas price predictions based on
historical blockchain data. Unfortunately, oracle predictions
are less accurate than advertised [6], which makes it difficult
for distributed applications (Dapps) to operate predictable
services both in terms of price and performance.

Currently the accuracy of the gas price oracles is not well
understood. Pierro et al. have analyzed the accuracy of the
ETHGasStation oracle and found that transactions submitted
with predicted gas prices fail be included in Ethereum block

within the expected delay [6]. Their work however does not
compare the accuracy of multiple oracles. Their work also
does not analyze the occurrence of cases where transactions
enter a block within the expected delay, but at a higher than
necessary price. Other works have developed improvements
to the accuracy of price prediction methods used in existing
oracles, but these methods work only for very low expected
delays and did not result in hosted services available to
blockchain users [7]–[9]. As a result, blockchain users do not
know which publicly available oracle to rely on and how much
error to expect.

In this paper we revisit the question of gas price oracle
accuracy. We propose a new gas prediction accuracy metric
that allows us to consider two types of gas price misprediction.
First, when oracles provide a price that is too low, which
leads to longer than expected transaction delay. Second, when
oracles provide a price that is too high, which leads to
overpayment.

We collect and analyze a dataset of 44,332 Ethereum blocks,
18,742,478 transactions, and 180,779 gas price predictions
collected between April 8, 2021 and April 15, 2021. Based
on this dataset we compare the accuracy of three publicly
available oracle APIs (ETHGasStation [10], Etherchain [11],
Anyblock [12]) and two standalone CLI tools (Web3.py [13]
and Geth [14]). Our results show that the ETHGasStation
oracle produces the most accurate and stable price predictions.
For users that prefer to run their own oracle Web3.py provides
comparable performance.

The rest of this paper is organized as follows. In Section II
we discuss the background on miner transaction pool mechan-
ics and existing gas price oracles. Section III details the related
work in gas price prediction and measurement. In Section IV
we describe our data collection process. Section V presents the
results of our analysis of oracle accuracy. Finally, we conclude
in Section VI.

II. BACKGROUND

A. Miner Transaction Pool Mechanics

Ethereum transactions enter the blockchain via miner nodes,
who gossip the transaction among themselves. In some sim-
plification, when a miner receives a transaction it validates
the transaction and moves it into the executable (pending)
transaction pool. The transactions in that pool are sorted by
gas price. The miner will try to include high value transactions
in its blocks, but may also remove transactions because they
have been included in blocks by other miners, or because they978-1-6654-3156-9/21/$31.00 c©2021 IEEE



are replaced in the pool by higher valued transactions. Thus,
at any given point, there is a market-drive price cutoff for
transactions to make it into a block. There also is a second
price cutoff for transaction to remain in the pool and stand a
chance for inclusion is subsequent blocks. Because the demand
for space in blocks fluctuates with the volume of submitted
transactions, it is easier to think of these price cutoffs in terms
of the percentile of a transactions gas price in the pending
transaction pool.

B. Gas Price Oracles

Gas price oracles aim to predict the gas price for new
transactions, so that they will remain in miner pools long
enough to be included in a block. Oracles generally predict
prices in a number of tiers, specifically instant/fastest,
fast, average/standard/normal, and slow/safe low de-
pending on an oracle’s nomenclature. ETHGasStation [15],
Etherchain [16], and Web3.py [13] specify their tiers in terms
of expected transaction acceptance delay (TAD). The delay
target for transactions submitted at the instant price point
is the delay of one, or two blocks, or under 30 sec. The fast

tier generally means within 2 min, average 5 min, and slow

30 min. Anyblock [17] and Geth [14] on the other hand, spec-
ify their tiers in terms of accepted transaction percentile (ATP),
or the percentile the transaction price achieves within the
past 200 blocks of the block that accepts it. The price of
transactions submitted at the instant tier are expected to be
at the 99th percentile, fast at the 90th percentile, average
at the 60th percentile, and slow at the 35th percentile.

ETHGasStation and Etherchain use a Poisson Regression
Statistical model to predict transactions based on gas prices in
the past 200 blocks, updated every 100 blocks, or 25 min [6].
Anyblock simply reports the prices of specific gas price
percentiles of accepted transactions in the past 200 blocks,
without using Poisson Regression to tie them to acceptance
delays [17].

Besides the above oracles accessible through REST APIs,
we also investigate standalone tools. The Geth [14] imple-
mentation of an Ethereum miner offers a CLI to estimate
gas price based on percentile and the number of observed
blocks [18]. Web3.py [13] is a library that connects to a Geth
node and creates a gas price prediction based on expected
delay, the number of observed blocks, and whether more recent
transactions should be weighted more heavily.

III. RELATED WORK

Although gas price prediction is a critical technology for
Dapp operation, until recently not much work has been done
to understand and improve gas prediction mechanisms.

Weber et al. were the first to analyze the relationship be-
tween gas price and transaction acceptance delay [19]. They
showed the diminishing marginal return of higher gas prices on
transaction delay. They also measured transaction failure rates
and proposed transaction resubmission mechanisms based on
dynamic price adjustments. Sousa et al. performed a similar
analysis using Pearson correlation to argue that gas price does

not strongly correlate with transaction acceptance [5]. These
results may be understood in the context of transaction pool
mechanics, where miners prefer higher priced transaction for
inclusion in blocks, but do not follow strict priority.

Pierro and Rocha considered the relationship between
blockchain factors, such as network hash rate and the
price of Ethereum in USD, and the price predictions by
ETHGasStation [20]. They used Granger causality and discov-
ered that the changes in the number of pending transactions
and in the number of miners have statistically significant
influence on changes in predicted gas prices. Lacking a metric
for oracle accuracy, however, their work did not investigate the
Granger causality of environmental factors on the accuracy of
oracle predictions. Pierro et al. extended that work to show
that ETHGasStation misses the transaction acceptance delay
more often than the advertised 2% of the time [6]. They
also showed that gas prediction accuracy improves with more
frequent prediction based on more up-to-date data.

Other efforts aimed to provide better gas prediction models.
Liu et al. developed a regression XGBoost model to predict
the gas price cutoff for transaction acceptance into the next
block [7]. Their approach limited transaction overpricing and
showed that 74.9% of transaction could save on gas fees.
Werner et al. noticed a seasonality to gas prices of accepted
transactions and developed a model based on Gated Recurrent
Units for gas price prediction [8]. Their model outperformed
the prediction mechanism in Geth to show cost savings of
over 50% and inclusion delay of 1.3 blocks. Carl and Ewerhart
used a seasonal ARIMA model to predict median threshold gas
price [9]. Finally, Singh et al. showed that a Random Forrest
model also led to more accurate predictions than those offered
by ETHGasStation [21].

In this paper, however, we focus on the accuracy of publicly
gas price oracles available to Dapps. At the same time, our ac-
curacy metrics may be applied to new prediction mechanisms
to compare them against the status quo.

IV. DATA COLLECTION

To help interpret the results we briefly describe our data
collection process and data structure.

A. Block and Transaction Data

To obtain block and transaction pool data we deployed a
local Geth node and enabled the eth and txpool names-
paces of Geth JSON-RPC API [22]–[24]. We query the Geth
node three times a second using the eth_blockNumer and
txpool_content methods and record the data in the Block

and Transaction tables shown in Table I.

B. Oracle Data

We collected data from five different oracles: ETHGasSta-
tion, Etherchain, Anyblock, Web3.py, and Geth. We access
ETHGasStation, Etherchain, Anyblock through their REST
APIs [10]–[12] and parse the gas price for each tier. To access
Web3.py and Geth gas prediction CLIs [18] we deployed a
local Geth node. We query each endpoint when the Geth node



Table Field Source Description
Block no Geth API Block number

hash Geth API Hash of block fields
ts Geth API Timestamp of block creation
tx_list Geth API The list of transaction hashes in the block

Transaction hash Geth API The hash of the transaction
sub_ts Geth API The time the transaction was submitted
price Geth API The gas price at which the transaction was submitted

Oracle name Oracle API/CLI The name of the oracle
tier Oracle API/CLI The name of a price prediction tier
price Oracle API/CLI Price predicted by the oracle for the tier
ts Query script Time at which we recorded the prediction

Environment net_hash_rate Etherscan The combined hash rate of Ethereum miners
eth_usd Etherscan The price of Ethereum in USD
ts Query script The time at which queries for the data

TABLE I: Database schema of the collected data.
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Fig. 1: Transactions that match gas price prediction for each
oracle and tier.

detects a new block (around 13 sec on average) and record the
data in the Oracle table as shown in Table I.

Web3.py and Geth only permit a price query with respect to
one set of parameters at a time. To enable queries to Web3.py
for all four tiers with the block interval, we modified and
rebuilt Web3.py’s generateGasPrice function. By isolating
and combining instances where each category prediction was
repeating the same calculations, we were able to cut the
prediction runtime to a quarter of the original time. This
modification allowed us to query Web3.py four times during
each 13 sec data collection period. Unfortunately, we were
unable to do the same for the Geth CLI and so we configured
Geth to only report prices at the fast tier. We configured
Geth parameters to report on prices at the 90th percentile
corresponding to Anyblock’s fast tier.

C. Environment Data

Finally, we collect the Ethereum environment data, specif-
ically the price of Ethereum in USD and the network hash
rate. We obtain these from Etherscan’s API [25]. We record
the data in the Environment table in Table I.

V. EVALUATION

A. Number of Transactions

To illustrate the integration of data in the Oracle and
Transaction tables, we compute the relative transactions
counts using price predictions from the different oracles and
tiers. Of course it is not possible to know whether a transaction
submitted at a price predicted by an oracle was actually
submitted after consulting the oracle, but we follow the
assumption of Pierro et al. [6] that it might as well have been.

Figure 1 shows the number of transactions submitted at the
price predicted by each oracle and tier. The x-axis lists the
oracles, while the y-axis shows the different prediction tiers.
The shade of each cell represents the number of transactions
submitted at the gas price predicted by the oracle for the tier
at transaction submission time. So for example, the number of
transactions for Anyblock slow is given by:

SELECT count(*)
FROM Oracle AS O, Transaction AS T
WHERE O.name=‘anyblock’ AND O.tier=‘slow’ AND

O.gas_price=T.gas_price AND
T.ts>O.pred_ts AND T.ts<O.pred_ts+13s

where 13 sec is the block interval. Note that as mentioned in
Section IV-B we do not have gas price prediction for Geth
other than for the fast tier.

In general, we observe that the instant and fast tiers are
similarly popular across oracles, in that there are comparable
numbers of transactions submitted at the gas price predicted
by all oracles in those tiers. We also observe that the average
tiers for Anyblock and Etherchain and the slow tiers for
ETHGasStation and Web3.py are the most popular. This
result indicates that blockchain users tend to accept eventual
transaction acceptance for lower price.

The data we collected does not corroborate the results pre-
sented by Pierro et al., who claim that the fast and average

tiers of ETHGasStation are used by users only 6.3% of the
time [6]. We observe that for ETHGasStation transactions use
the slow tier most frequently, but that the remaining tiers
are equally likely. Specifically, we observe that the fast and
average were used by 23.8% of transactions. We suspect that
this difference between our results and those of Pierro et al.
stem from data being collected at different observation periods,
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Fig. 2: Percentage of transactions eventually accepted for each
oracle and tier.

as transaction fees have increased in 2021 likely leading more
users to opt for lower gas price tiers.

B. Transaction Acceptance Rates

We also investigate what percentage of transactions submit-
ted under the price of each oracle and tier eventually make
it into a block. Figure 2 shows the percentage of transactions
submitted at the price of each oracle and tier that are eventually
accepted into a block. The x-axis lists the oracles, while the
y-axis the prediction tiers.

We observe that transaction in higher priced tiers are more
likely to be accepted into the blockchain. The difference
between acceptance rates is small for the instant, fast,
and average tiers, but is markedly lower for the slow tier.
Notably, ETHGasStation and Web3.py perform significantly
better at the slow tier than Anyblock and Etherchain.

These results indicate that ETHGasStation has the highest
transaction acceptance rates across all prediction tiers.

C. Gas Oracle Accuracy

To analyze and compare oracle accuracy, we first need to
come up with its precise definition. Different oracles pre-
dict gas prices with respect to transaction delay, e.g. ETH-
GasStation, or the percentile of accepted transaction price,
e.g. Anyblock. Depending on the type of oracle we consider,
we can measure its accuracy in terms of transaction acceptance
delay (TAD), or accepted transaction percentile (ATP).

We measure TAD as the difference between transaction
submission time and the time of the block that includes the
transaction. For an oracle o and tier t we can query for a TAD
distribution Do,t as

SELECT B.ts - T.sub_ts
FROM Block AS B, Transaction AS T, Oracle AS O
WHERE T.hash in B.tx_list AND

O.name=o AND O.tier=t AND
O.gas_price=T.gas_price
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Fig. 3: Examples of TAD and ATP distributions.

The ATP query is a bit more complex, but it computes
the percentile of each accepted transaction gas price with
respect to the gas prices of the accepted transactions in the
200 preceding blocks, including the transaction’s own block.
We base the ATP calculation on 200 blocks, since that’s
the time horizon of input data to both ETHGasStation and
Anyblock [17], [20], [26].

Figure 3 shows the TAD for transactions in ETHGasSta-
tion’s slow tier and the ATP for transactions in Anyblock’s
average tier. The y-axis in Figure 3a marks TAD in seconds.
The y-axis (reversed) in Figure 3b marks the ATP in percent.
The x-axis in both graphs marks the transactions accepted at
the price of each oracle/tier sorted by TAD/ATP values. The
solid blue lines show the TAD and ATP values, while the
dashed red lines show the target TAD and ATP values for the
tiers.

We observe that TAD/ATP values fall both above and below
the target tier value. When the TAD/ATP line lies above
the target line the oracle-proposed gas price is too low and
transactions take longer than target to make it into a block.
This is the case of a gas oracle underpricing its prediction.
When the TAD/ATP line lies below the target line the oracle-
proposed gas price is too high, meaning that transactions
submitted at a lower price could have still made it into a block
within the target tier delay. This is the case of a gas oracle
overpricing its prediction.

Based on the examples of underpricing and overpricing
predictions illustrated in Figure 3 we propose to compute
oracle accuracy as follows.

1) First, we focus on comparing the number and types of
mis-predictions. To compare oracle and tier combinations in
spite of differing counts, we use proportions. Recall that given
a binary predicate P , the Iverson bracket [P ] is 1 when P is
true and 0 otherwise. For the set of oracles O and tiers T ,
we have an observed distribution of TAD values Do,t and
the target TAD ro,t for o ∈ O and t ∈ T . We compute
the proportion of transactions suffering from underpricing and
overpricing, respectively:

p−o,t =

∑
d∈Do,t

[ro,t < d]

|Do,t|
, p+o,t =

∑
d∈Do,t

[ro,t > d]

|Do,t|
.

Pierro et al. [6], [20] noted that gas price oracles report a
margin of error of 2%. We were not able to verify that
number in oracle documentations. As such, we consider any



transaction whose TAD differs from the target as suffering
from under- or overpricing.

2) Next, we focus on magnitudes. To compare TAD values
across the different oracles and tiers, we translate and scale
all values to [0, 1] using min-max rescaling:

D̂o,t =

Do,t − min
o′∈O,t′∈T

Do′,t′

max
o′∈O,t′∈T

Do′,t′ − min
o′∈O,t′∈T

Do′,t′

Similarly, for target transaction delay:

r̂o,t =

ro,t − min
o′∈O,t′∈T

Do′,t′

max
o′∈O,t′∈T

Do′,t′ − min
o′∈O,t′∈T

Do′,t′

3) We compute the mean underpricing and overpricing
magnitude

m−o,t =

∑
d∈D̂o,t

(d− r̂o,t)[r̂o,t < d]∑
d∈D̂o,t

[r̂o,t < d]
,

m+
o,t =

∑
d∈D̂o,t

(r̂o,t − d)[r̂o,t > d]∑
d∈D̂o,t

[r̂o,t > d]

as the mean difference between scaled transaction delay and
scaled target delay.

4) Finally, we compute oracle accuracy, or rather its in-
accuracy as the mean, normalized area above and below the
target delay. The underpricing inaccuracy is i−o,t = p−o,t ×m−o,t
and overpricing inaccuracy i+o,t = p+o,t ×m+

o,t for each oracle
and tier. The underpricing and overpricing inaccuracy allows
us to understand how badly oracles miss their tier TAD/ATP
targets during our observation period. The inaccuracy values
increase when more transactions miss tier TAD/ATP, or when
fewer do so, but more significantly.

5) To compute oracle inaccuracy based on ATP, we simply
replace TAD with ATP in the above steps.

Figure 4 shows the underpricing and overpricing inaccuracy
for the different oracles and tiers. The x-axis lists the oracles
and the y-axis the tiers. The shade of each cell shows the
calculated inaccuracy, i−o,t in Figure 4a and i+o,t in Figure 4b.

We observe in Figure 4a that the instant and fast tiers
show the greatest degree of underpricing inaccuracy as they
miss the target TAD and ATP most often and to the greatest
extent. While the average and slow predictions generally
make their TAD and ATP targets more often, the notable
exceptions are Anyblock slow and Web3.py average.

We also observe in Figure 4b that, comparatively, over-
pricing is less of an issue with the exception being the
Etherchain slow tier, where transactions could have made
their target TAD at a lower price. Notable is the absence
of overpricing for Anyblock instant and slow tiers for the
observed transactions as shown by the N/A values.

These results indicate that ETHGasStation offers the best
accuracy both in terms of avoiding underpricing and overpric-
ing of transactions.
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Fig. 4: Oracle inaccuracy.

D. Gas Prediction Stability

We also wanted to investigate the stability of gas price
predictions over time. As discussed in Section II-A miners
select the most highly valued transactions in their pools for
inclusion into the next mined block. As such a transaction’s
probability for being accepted into a block depends on the
percentile of its gas price with respect to other transactions
in the pool. The question we want to answer is how does
a transaction’s price percentile in a pool changes as new
transactions enter the pool and others are accepted into a block.

Figure 5 shows the gas price percentiles of Anyblock
predictions in different tiers. The y-axis shows the price
percentiles, while the x-axis shows the time elapsed since
the initial prediction. We observe that as time elapses the
initial percentile of a prediction changes. The change makes
it more or less likely for the transaction to be accepted.
Eventually around 92% (Figure 1 times Figure 2) of Anyblock
transactions get accepted when the the percentile of their price
gets high enough before the transaction is kicked out of the
pool (percentile drops). Notice the rise of all percentiles over
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Fig. 5: Gas price percentiles in transaction pool over time.

5% 10% 20% 30%
Transaction pool 0.35% 0:01:25 0:04:47 0:16:30 0:43:04
Transaction pool 0.60% 0:02:07 0:06:30 0:19:59 0:52:18
Transaction pool 0.90% 0:06:39 1:06:47 2:43:31 4:04:18
Transaction pool 0.99% 1:28:43 3:14:46 6:29:29 8:32:29

TABLE II: Average amount of time for a price percentile to
change by a certain percentage in the transaction pool.

the observation period; even low priced transactions may be
accepted into new blocks as new transactions are submitted at
a lower price. This result shows that as new transactions enter
the pool and others make the move from the pool into blocks
the percentile of a prediction varies significantly over time.

Table II shows the time as hours:minutes:seconds of how
long it takes for a transaction percentile in a miner pool (rows)
to change by a number of percent (columns). To calculate
these values, we averaged how long it takes for 500 different
transaction percentiles to change by some percentage in the
positive or negative direction as illustrated in Figure 5. We
observe that lower price percentiles are less stable, which leads
low price transactions to be removed at times from some miner
pools, increasing their acceptance delay, or necessitating their
resubmission.

Given the level of stability of transaction price percentiles
in transaction pools, we wanted to compare it to the sta-
bility of predicted gas prices. Table III shows the time as
hours:minutes:seconds of how long it takes for the percentile
of an oracle/tier prediction price (rows) to change by a number
of percent (columns). To calculate these values, we averaged
how long it takes for 500 different predictions for each oracle
and tier to change by some percentage in the positive or
negative direction.

We observe that the ETHGasStation prices are the least
stable (have the shortest durations for each percentage/tier),
which means that the oracle adjusts them most frequently.
Based on the results of Pierro et al. [6] showing that more
frequent prediction lead to greater oracle accuracy, we believe
that the greater predicted price volatility of ETHGasStation
allows it to track percentile fluctuation in transaction pools

5% 10% 20% 30%
Anyblock Slow 51:46:26 51:46:26 51:46:26 51:46:26
Anyblock Average 0:49:14 2:18:47 9:37:09 10:56:06
Anyblock Fast 0:46:41 1:21:21 6:31:36 15:54:56
Anyblock Instant 0:27:58 0:36:33 4:19:12 9:34:05
ETHGasStation Slow 0:10:25 0:12:50 0:17:10 0:17:22
ETHGasStation Average 0:18:00 0:32:47 1:15:24 1:17:49
ETHGasStation Fast 0:05:27 0:08:38 0:12:06 0:16:29
ETHGasStation Instant 0:07:15 0:11:42 0:13:48 0:16:15
Etherchain Slow 1:57:35 1:57:35 1:57:35 1:57:35
Etherchain Average 0:19:12 0:40:45 1:38:29 1:41:31
Etherchain Fast 0:18:26 0:44:35 4:50:17 15:44:28
Etherchain Instant 0:13:36 0:26:30 3:02:48 9:00:21
Web3.py Slow 0:40:49 1:45:36 4:26:39 14:52:12
Web3.py Average 0:56:08 1:32:37 10:59:57 21:11:10
Web3.py Fast 0:45:29 1:26:41 9:10:59 16:25:44
Web3.py Instant 0:37:38 1:37:43 7:36:12 16:45:15
Geth Fast 0:50:22 1:21:54 6:37:11 15:59:23

TABLE III: Average amount of time for each prediction and
tier to change by a certain percentage.

more readily, and thus provide the most accurate predictions
among the oracles. We also observe that the predictions for
Anyblock and Etherchain slow change very rarely, which
results in the same time for them to change by 5% through
30%. These tiers suffer from significant overpricing and un-
derpricing respectively and could benefit from more dynamic
adjustment of predicted price.

E. Factors Affecting Gas Prediction Accuracy

Finally, we wanted to extend the analysis of Pierro and
Rocha to understand the factors that affect oracle accuracy.
Pierro and Rocha computed Granger causality to detect the in-
fluence of environmental factors on gas price predictions [20].
We use a similar approach to understand the impact of these
factors on the accuracy of gas price predictions.

Granger causality is a statistical test to determine whether
one time series is useful in forecasting another. The Granger
causality test may be used with statistically stationary time
series, where statistical properties, such as mean, variance,
etc. are constant over time. Pierro and Rocha use the Aug-
mented Dickey-Fuller (ADF) to show that factors such as
transaction_count, net_hash_rate, and eth_usd are
stationary after first differentiation.

To confirm factor data stationarity, we first compute
transaction_count based on the Transaction table
in Table I for each 13 sec period. We also average
net_hash_rate and eth_usd from the Environment table
for each 13 sec period. We then perform the ADF test on
these series and confirm their stationarity in our data. We also
confirm that the underpriced and overpriced inaccuracy is also
stationary after first differentiation.

With this verification in hand, we calculate Granger
causality between the environmental factors and inaccu-
racy metrics and present the results in Tables IV and V.
The left column shows the oracle and tier combination,
while the top row shows the factors. We present statis-
tically significant Pearson correlations in bold. For rows
without entries we did not have sufficient data to calculate



Tx. Count Net. Hash Rate ETH/USD
Anyblock Slow
Anyblock Average 7.87E-01 2.32E-01 4.20E-01
Anyblock Fast 2.42E-02 3.24E-01 8.20E-02
Anyblock Instant 5.65E-01 2.26E-02 3.25E-01
ETHGasStation Slow
ETHGasStation Average
ETHGasStation Fast
ETHGasStation Instant 7.32E-01 8.76E-03 1.02E-01
Etherchain Slow
Etherchain Average
Etherchain Fast
Etherchain Instant 2.95E-02 2.29E-01 3.16E-03
Web3.py Slow
Web3.py Average
Web3.py Fast
Web3.py Instant 4.80E-01 1.27E-02 5.51E-02
Geth Fast 5.49E-04 4.10E-02 1.83E-01

TABLE IV: Factors do not cause underpriced predictions.

Tx. Count Net. Hash Rate ETH/USD
Anyblock Slow
Anyblock Average 2.22E-02 6.90E-03 6.56E-01
Anyblock Fast 8.84E-05 2.12E-01 1.03E-03
Anyblock Instant
ETHGasStation Slow 8.38E-02 2.78E-01 2.12E-04
ETHGasStation Average 4.48E-01 8.56E-02 2.21E-01
ETHGasStation Fast 1.59E-01 4.11E-01 2.01E-01
ETHGasStation Instant 1.99E-02 4.89E-01 3.92E-02
Etherchain Slow 7.70E-01 2.66E-02 1.77E-01
Etherchain Average 6.07E-01 4.88E-01 5.68E-01
Etherchain Fast 1.18E-02 6.19E-02 3.59E-01
Etherchain Instant 1.06E-01 8.71E-01 3.45E-02
Web3.py Slow 6.97E-01 2.18E-01 7.25E-02
Web3.py Average 2.22E-01 2.09E-01 5.69E-02
Web3.py Fast 6.03E-01 3.32E-01 1.90E-01
Web3.py Instant 3.93E-02 5.92E-01 1.32E-02
Geth Fast 3.04E-03 4.41E-01 3.32E-01

TABLE V: Factors does not cause overpriced predictions.

Granger causality – the statsmodels.tsa.stattools.

grangercausalitytests returns InfeasibleTestError

due to too many constant values in a series [27].
In general we observe that oracle accuracy tends to be

most sensitive to the count of transactions in transaction
pools, though the accuracy of most oracles and tiers cannot
be predicted from the transaction counts. Interestingly, the
accuracy of most of the oracle and tier combinations cannot
be predicted from the price of Ethereum in USD, meaning
that their accuracy is not affected by the changes in the value
of cryptocurrency. Nevertheless the accuracy of some oracle
and tier combinations do exhibit sensitivity to the price of
Ethereum.

VI. CONCLUSIONS

In this paper we analyzed and compared the performance of
Ethereum gas price oracles in terms of their accuracy, transac-
tion accept rates, price stability, and sensitivity of prediction
accuracy to environmental factors. Our analysis was based on a
new oracle accuracy metric that captures both underpricing and
overpricing of transactions. We observed that ETHGasStation
produces the most accurate and stable price predictions. For
users that prefer to run their own oracle Web3.py provides
comparable performance. At the same time, the accuracy and

transaction acceptance rates of existing oracles leave much
to be desired and improved gas prediction mechanisms are
needed for Dapps to provide predictable operational costs and
performance.
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