Parallel Block Execution in SOCC Blockchains
through Optimistic Concurrency Control

Alex Valtchanov*
Princeton University
Princeton, NJ, USA

Lauren Helbling*

Bozeman, MT, USA

Montana State University

Batuhan Mekiker Mike P. Wittie
Montana State University ~ Montana State University
Bozeman, MT, USA Bozeman, MT, USA

alexvaltchanov@princeton.edu lauren.helbling @student.montana.edu batuhan.mekiker @montana.edu mike.wittie@montana.edu

Abstract—The blockchain ecosystem is growing rapidly with
new decentralized applications being released constantly, boasting
significant growth in functionality and adoption. With accelerating
adoption rate, the load on all the existing blockchain networks
grows as well, causing increased transaction delays. We seek to
improve the performance of blockchain solutions by increasing
transaction throughput. This paper presents a novel approach
for executing blocks in parallel using optimistic concurrency
control and conflict rescheduling. Specifically, we show that our
approach improves the performance of Separation of Consensus
and Compute (SoCC) blockchains with the potential to reduce
smart contract transaction wait times.

Index Terms—blockchain, parallel execution, optimistic concur-
rency, scheduling, dependency graph

I. INTRODUCTION

The popularity and variety of blockchains is growing rapidly.
In fact, the number of digital wallets in all blockchains com-
bined is more than 70 million as of May 2021 and growing [1].
On Ethereum alone, daily transactions reached their peak at
approximately 1.7 million transactions per day in May 2021
— an increase of more than 20% from the previous year
and a 350% increase from the last 5 years [2]. With the
growing volume of transactions, users experience either longer
delays or failed transactions. Between April 15" and 21% of
2021, 1.1 million transactions were issued in UniSwap, one
of the leading Decentralized Finance (DeFi) applications on
Ethereum [3]. Out of the 1.1 mil, roughly 22% failed due
to insufficient resources (gas) as users had to compete with
one another for transaction inclusion in a block. As blockchain
scales with a growing volume of incoming transactions, cases
like UniSwap will become more common with blockchain
throughput being unable to keep up. Therefore, we believe the
future of blockchain depends on the development of higher
blockchain throughput.

Existing solutions propose different approaches to increase
transaction throughput, one of which is the concurrent execu-
tion of transactions within blocks. In that vein, Dickerson et al.
propose locking mechanisms, however, locks are not a user-
friendly way to handle transaction conflicts due to their pes-
simistic nature and their introduction of additional delays [4].
Bartoletti et al. explore concurrent transaction execution by
introducing static analysis of smart contracts [5]. Yet, static

* Authors contributed equally

analysis requires pre-execution which reduces the benefits of
parallelism. Anjana et al. and Jin et al. leverage optimistic
concurrency, dependency graphs, and state rollbacks [6], [7].
However, where Anjana et al. introduce higher complexity with
fork-joins, the work of Jin et al. is limited to permissioned
blockchains.

Most blockchain models do not distribute network resources
efficiently; every node in the network participates in each aspect
of finalizing a block, from reaching a consensus to verifying the
final state. Flow, a new public blockchain, proposes an approach
to increase transaction throughput by addressing this network-
level limitation [8]-[10]. In Flow, the selection and ordering
of transactions runs independently from their execution by
dividing the roles of the network nodes. Transactions are
gathered by Collector nodes, ordered and placed into blocks
by Consensus nodes, executed by Execution nodes, and verified
by Verification nodes. This division of roles allows for multi-
ple blocks to be created nearly simultaneously and executed
lazily. The Flow model increases blockchain throughput by
eliminating transaction execution delay from the distributed
consensus process. Unfortunately, Flow throughput can be
limited if the execution cannot keep up. Hereafter, we refer to
blockchains that separate consensus from computation, such as
Flow, as Separation of Consensus and Compute (SoCC) model
blockchains.

We observe an opportunity for parallelism in the SoCC
blockchain model that can further increase thrpughput and pro-
pose a protocol for parallel execution of blocks using optimistic
concurrency control and conflict rescheduling. Transactions
are initially placed into blocks optimistically, in the order
given by Consensus nodes. These blocks are then executed in
parallel and conflicting transactions are dynamically discovered
at run-time, creating a dependency graph that captures all
of the conflicting transactions and the relations among them.
Conflicted transactions are suspended and put back into the
awaiting transaction pool with the new dependency knowledge.
Once discovered, we schedule suspended transactions while
preserving the order imposed by the consensus mechanism.
With already known conflicts, our method guarantees that each
transaction is scheduled and executed at most twice.

This paper offers the following contributions:

1) We develop a mechanism that optimistically executes

blocks in parallel, capturing conflicting transactions in
a suspended transaction dependency graph (STDG).

2) We design an efficient scheduling algorithm for conflicted
transactions using the STDG to ensure that transactions
will be executed at most twice.

3) We compare the performance of parallel blockchain exe-
cution to the standard Flow execution model and show a
3.5x speedup on average. We also demonstrate the limited
overhead of storing and maintaining the STDG.

Our evaluation demonstrates that executing blocks in parallel
with optimistic concurrency control and rescheduling con-
flicting transactions increases transaction throughput, leading
to better performance with minimal changes to the existing
blockchain protocol. Our solution could allow for applications
to build a better user experience with higher throughput and for
throughput heavy applications to explore blockchain solutions.
The rest of the paper is organized as follows. In Section II
we provide background on the standard and SoCC blockchain
execution model. Section III introduces and compares existing
research related to concurrent execution in blockchains. Sec-
tion IV details our conflict discovery algorithm and scheduler.
In Section V we present our evaluation and measurements.
Finally, in Section VI we conclude and discuss future work.

II. BACKGROUND

Blockchain is a decentralized distributed ledger comprised
of a network of mutually distrusting nodes. Each block on the
blockchain contains a tamper-proof sequence of transactions.
The blockchain data structure forms the foundation of modern
cryptocurrencies but extends to other applications in which a
distributed consensus is needed, such as voting mechanisms.
Some blockchains follow an UTXO-based model, such as
Bitcoin, in which there are no accounts or wallets maintained,
but rather a continual exchange of unspent transactions. On
the other hand, account-based blockchains, such as Ethereum,
maintain balances and states within accounts. The SoCC model
is exclusive to account-based blockchains, where the accounts
and states are updated by smart contracts.

In a typical blockchain, a node creates a new block and
execute its transactions sequentially. A consensus protocol is
then used to determine which new block will be placed on the
blockchain. During the verification process, every node serially
re-executes every transaction in the new block to validate their
execution and the correctness of new account states. This
execution model is slow because network dissemination of
full blocks takes time and requiring every node to execute
every block before forwarding it to other nodes increases
dissemination time. The result is long inter-block intervals and
decreased throughput in fixed size blocks.

Dapper Labs identified these inefficiencies and considered a
novel approach by creating Flow, a new blockchain that divides
the work of the network nodes into four roles with sub-tasks:
Collector, Consensus, Execution, and Verification [8]-[10].
Collector nodes are responsible for gathering incoming trans-
actions and batching them into collections, which are then

transmitted to Consensus nodes. The Consensus nodes agree
upon the order of transactions in new blocks but do so on
small blocks that only store transaction hashes, which speeds up
block dissemination. The resulting blocks are finalized and im-
mutable. Execution nodes, with adequate processing resources,
then execute the finalized blocks, while Verification distributes
the work of checking execution correctness to attest updates
to account states. The division of node roles pipelines block
processing while efficiently using network resources among
the Consensus nodes and relying on the greater processing
power of the Execution nodes, thereby increasing transaction
throughput as long as Execution nodes can keep up with
Consensus nodes [8].

Since the proposal of blocks occurs independently from
block execution in the SoCC blockchain model, multiple blocks
may be finalized on the blockchain and not yet executed. In
Flow, such blocks would be executed sequentially. We propose
that Execution nodes execute multiple blocks in parallel, allow-
ing for higher transaction throughput by speeding up execution.

III. RELATED WORK

Existing research explores blockchain speed-up with novel
concurrency protocols for smart contracts. Saraph et al. explore
a variety of speculative smart contract concurrency techniques
by rerunning historical Ethereum transactions, concluding that
parallelism in Ethereum smart contract execution is both possi-
ble and beneficial [11]. The strategies follow two phases: first,
optimistically executing transactions in parallel, then discarding
conflicting transactions and rerunning them sequentially. This
model improves transaction throughput when there are few
conflicting transactions and many transactions can be executed
in parallel. However, their two-phase technique could produce
negative speed-up if too many transactions are being rolled
back. Regardless, the exploratory study motivated further work
on parallel transaction execution.

Reijsbergen et al. study the conflict rates of real transaction
data from Bitcoin and Ethereum blockchains and the potential
of concurrency to speed-up execution time [12]. They argue that
group concurrency, such as executing blocks in parallel, offers
more potential speed-up than single-transaction concurrency.

Dickerson et al. first proposed a method of executing trans-
actions within a block concurrently using locking and inverse
logs [4]. Miners speculatively execute transactions in parallel
and develop a happens-before graph of transaction dependen-
cies, which is provided to the validators. With this knowledge,
validators can execute transactions in parallel without conflict.
In this way, the performance of both execution and verification
improves with parallelism. Since there is not a division of roles,
a fork-join approach must be used to allow for concurrent ex-
ecution. While functional, by the nature of pessimistic concur-
rency control, this approach exhausts computational power and
time by anticipating conflicts with locking for every transaction.

Bartoletti et al. expand upon Dickerson’s idea, but argue for
static analysis of smart contracts rather than locking [5]. In their
protocol, transactions are safely swapped prior to execution in
order to parallelize without conflicts. This paper assumes that

Block #1 Block #2 | Block #3 Block #4 | Block #5 Block #6 |
T y=a— N
. . | STDG
To) (T [(1 ‘ [T [
T, T, I T, I Ty |1 +-- Ts Ty
T, L J [Q T, J 1 Ti2 1 J & i
1 1 1
o — J T — J o — J o
BI Bz 733 T(‘ I 11 I 10
-- Burs.t (B) = Nonconflicting Dependency
Conflict Root Conflicting Dependency Ty Rescheduled Transaction

Fig. 1: Protocol overview. Each block within a burst is executed in parallel and dependencies are learned at execution time.
Conflict roots such as 75 and Ty initiate a cascading series of conflicted transactions which must be suspended. The Suspended
Transaction Dependency Graph contains suspended transactions which are later rescheduled according to their dependency

structure.

the analysis of read/write keys to detect the swap-ability of
transactions is possible but does not propose a specific method
of doing so with real smart contracts.

Other protocols [6], [7] eliminate locking concurrency con-
trol by optimistically executing and developing dependency
graphs to roll back transactions when needed. Similar to
Saraph et al. rolled back transactions are then executed se-
quentially [11].

Jin et al. propose a protocol for dividing the roles of proposal
and validation [7]. Their work is specifically for permissioned
blockchain, since it does not rely on a consensus algorithm
such as proof of work, and aims to run both execution and
validation in parallel. Instead, our protocol applies to all public
SoCC blockchains, dividing nodes efficiently using the Flow
framework to optimize execution.

Our protocol is unique in executing entire blocks in parallel
rather than individual transactions within a block. We also
guarantee that every transaction will be executed in a parallel
block while being scheduled at most twice.

IV. PARALLEL EXECUTION PARADIGM

To achieve parallel execution of blocks, we extend the SoCC
model by having Consensus nodes finalize an ordered set
of blocks all at once, rather than one block at a time. We
refer to such a set as a burst; this set of blocks maintains
a well-defined ordering, thereby preserving the agreed-upon
order of transactions. Each burst 5; defines a time-step t;
blocks within a burst are executed in parallel on different
Execution nodes while each burst is executed sequentially. In
this model of computation, the transactions within each block
are still executed sequentially though on different Execution
nodes. Thus our approach is orthogonal to solutions that execute
transactions in parallel within a block [4], [12]

When introducing parallelism to transaction execution, the
notion of dependencies between transactions is critical in main-
taining a consistent computational state. Contrary to parallel
execution in conventional blockchains, our mechanism must
keep track of dependencies across blocks since blocks them-
selves are executed in parallel. Moreover, we must also keep
track of dependencies across bursts because blocks are finalized
in advance of their execution within SoCC blockchains. We

interpret dependencies in the form of a happens-before graph,
where transactions are vertices and a directed edge from 7, to
T} indicates that T depends on 7, (7} either reads or writes
to accounts written to by 7;) and must be executed after 7.

We say that a transaction is conflicted if (a): it depends on at
least one other transaction that is executed in parallel, or (b):
it depends on at least one conflicted transaction. Transactions
of the type (a) are referred to as conflict roots.

We propose that Consensus nodes schedule transactions
optimistically and discover conflicted transactions using the
dependency structure learned by the Execution nodes. Then,
Consensus nodes re-add any conflicted transactions on newly
finalized bursts using the discovered dependencies in a way that
avoids conflicts among re-added transactions. This approach,
outlined in Figure 1, allows our mechanism to guarantee every
transaction will be executed at most twice; transactions are
initially executed in parallel optimistically, while any conflicted
transaction will be re-executed under a conflict-free schedule.
The Execution nodes execute transactions within a burst based
on the state of the blockchain disseminated among the Execu-
tion nodes at the end of the previous burst.

A. Suspended Transaction Dependency Graph

A transaction which is known to be conflicted but has yet
to be re-executed is referred to as suspended. We must keep
track of suspended transactions and their dependencies so that
any dependent transactions are accounted for (i.e. discovered
to be conflicted). Furthermore, the dependencies of suspended
transactions can be used to schedule conflicted transactions
a second time without conflict. A transaction is no longer
suspended once it has been re-executed.

We define the Suspended Transaction Dependency Graph
(STDG), notated G, as the happens-before graph of all transac-
tions which are currently suspended at time-step ¢. This graph
captures the exact set of conflicted transactions that need to
be re-added to the chain while maintaining their dependency
structure. To update the STDG, all dependencies learned from
executing transactions in a burst are temporarily added to the
STDG, while any re-executed transactions and their associated
dependencies are removed from the STDG. Then, a second pass
is performed through the STDG to remove any dependencies

which do not contribute to transaction conflicts. Algorithm 1
details the process of updating the STDG at each time-step.

Procedure UPDATEDEPENDENCYGRAPH takes the STDG
of the previous time-step G,_; and the current burst B; as
input. UPDATEDEPENDENCYGRAPH relies on the EXECUTE,
PRUNE, NEWCONFLICTROOTS, and TRAVERSECONFLICTS
sub-procedures, and returns the updated STDG G;.

The EXECUTE sub-procedure returns a happens-before graph
Gp which contains newly discovered dependencies within and
between the current burst B; and the currently suspended
transactions V' (G;_1). Next, the PRUNE sub-procedure removes
any re-executed transactions in 3; from G;_; and returns Gp as
the pruned graph; as long as the scheduling algorithm adheres
to the learned dependencies, re-executed transactions cannot
be conflicted again and can no longer contribute to any further
conflicts.

The NEWCONFLICTROOTS sub-procedure takes the newly
discovered dependencies Gr and performs a Breadth-First-
Search (BFS) traversal of G from the set of transactions in the
current burst V' (B;). This process discovers any edges spanning
different blocks in order to collect and return any conflict roots
C in the current burst.

At this point, Algorithm 1 has collected new dependencies in
G and pruned re-executed transactions from the old STDG in
Gp. Together, the combined graph Gg U Gp contains both con-
flicting dependencies as well as nonconflicting dependencies.
To remove the nonconflicting dependencies, the TRAVERSEC-
ONFLICTS sub-procedure performs a BFS traversal of Gp UGp
from both the currently suspended transactions V(Gp) and the
new conflict roots C; any vertex visited by this traversal is
dependent on a conflict root or a suspended transaction and
is therefore conflicted. The subgraph which is visited by this
traversal is returned as the updated STDG G;.

B. Scheduling Suspended Transactions

With an STDG G, given by the iterative application of
Algorithm 1 at each time-step ¢, Consensus nodes are kept
up to date on which transactions need to be re-added to the
chain along with all dependencies among those transactions.

To reschedule suspended transactions without conflict, we
first perform a BFS traversal of the STDG to obtain the weakly
connected components. Because suspended transactions are
pruned at the time of execution, rather than at the time of
scheduling, the BES traversal begins with any already scheduled
transaction marked as visited. Each connected component rep-
resents a set of transactions whose dependencies are completely
contained within those transactions—every transaction within a
connected component must be executed in sequence. For each
burst, we schedule each connected component on its own block,
with the original ordering of transactions maintained, prioritized
by the oldest transaction in each connected component. We
continue to schedule connected components on their own block
within a burst until there are no more connected components
or until each block is full. This approach guarantees that re-
scheduled transactions are never conflicted; connected compo-
nents never span across blocks within a burst.

Algorithm 1 Suspended Transaction Dependency Graph

Input: Current STDG G;_1, burst B;
Output: Updated STDG G;

1: procedure UPDATEDEPENDENCYGRAPH(G;_1, B;)

2 Gr < EXECUTE(B, V(Gi—1))

3 Gp < PRUNE(G;_1,V(B}))

4 C < NEWCONFLICTROOTS(Gg, V(B;))

5 G; < TRAVERSECONFLICTS(Gr U Gp, V(Gp) UC)
6 return G,

7: end procedure

1: function PRUNE(G, V)

2 Gp + (0,0)

3 V(Gp) + V(G)\V

4 EGp) « E(G)\{(v,w) € E(G):veV}

5: return Gp
6
1
2
3
4
5
6
7
8
9

: end function

: function NEWCONFLICTROOTS(G, V)
C+ 0
for (v, w) € BFS(G,V) do
if w e V ABLOCKp(v) # BLOCKp(w) then
C + CU{w}
end if
end for
return C
: end function

: return G;
- end function

1: function TRAVERSECONFLICTS(G, V)
2 G: + (0,0)

3 for (v,w) € BFS(G,V) do

4: V(G:) < V(G) U{v,w}

5: E(G:) + E(Gy) U{(v,w)}

6 end for

7

8

Consensus nodes must wait until all suspended transactions
have been scheduled before including fresh transactions; this is
so that the size of the STDG cannot grow arbitrarily large. By
prioritizing suspended transactions over fresh transactions, with
the oldest suspended transactions granted the highest priority,
we can ensure that transactions will not be starved or delayed
indefinitely while limiting the size of the STDG.

The size of the STDG is correlated with the gap between the
most recently executed burst and the most recently scheduled
burst; if blocks are finalized further in advance of block execu-
tion, the STDG must account for farther-reaching dependencies.
To mitigate this issue, we impose a limit on the number
of bursts that Consensus nodes can schedule in advance of
execution — we refer to this limit as the burst limit.

With a block size of T transactions, a burst size of B blocks,
and a burst limit of L bursts, we can achieve a simple bound
on the number of suspended transactions S; at any time-step t:

mfaX(St) <TBL (1

The RHS of Eq. 1 captures the maximum number of transac-

tions which can be scheduled in advance of execution. In the
worst case, all of these transactions are conflicted and every
such transaction would become suspended upon execution.
However, because the scheduling algorithm waits until every
suspended transaction is re-scheduled, no additional transac-
tions will be scheduled and consequently suspended.

V. EVALUATION

To evaluate the efficacy of our parallel execution paradigm,
we simulate the process of finalizing and executing blocks
under our protocol with synthetic transactions and dependen-
cies, which we peg to the dependency frequency observed
by Reijsbergen et al. [12]. We vary the block size (number
of transactions per block), burst size (number of blocks per
burst), and burst limit (number of bursts finalized ahead of
execution) to study the effect of our protocol parameters on
the performance blockchain execution.

We use the speed-up factor as a metric for our evaluation.
We define the speed-up factor as the ratio between the number
of time-steps required to (re-)execute all transactions under our
protocol and the number of time-steps required under sequential
execution. When calculating the number of time-steps required
during sequential execution, we assume that every block is
filled to capacity for a given block size. Additionally, we
show that the resources consumed by our protocol, in terms
of computation time and memory, are negligible.

A. Experiment Setup

As a basis for our synthetic dependencies, we use an estimate
of the available parallelism among smart contracts; in their
study of the number of conflicts among Ethereum transactions,
Reijsbergen et al. reported that 60% of transactions within a
block were conflicted [12]. Reijsbergen et al. assess conflicts
based on the sender/receiver addresses of each smart contract,
including internal transactions.

Unlike concurrency protocols for typical blockchains, our
protocol must keep track of dependencies across blocks. To
generate synthetic dependencies across blocks, we first sample
the number of dependencies each transaction has from five
different distributions:

Dl ~ P(OO, 1)]E(Dl) =1
Ds ~P(6,1) E(D3) =12
Dy~ P(3,1) E(Dy) =15
Ds ~P(2,1) E(Ds) =2

where P(a, A) is the Pareto distribution with a probability
density function given by f(z) = ;%al; ANa >0,z > A
Then, for each transaction with dependency sampled from
D,, we sample a dependency distance from P(c, 1) which
assigns each dependency to a paired transaction. For each D;
and block size, we tune the parameter o so that the average
conflict rate within a block is close to 60% as reported by
Reijsbergen et al. [12]. The progression from D; to D5 captures

an increasing number of total dependencies.

6
D;
5 D3
g |
= —=- Ds
&
m 4
o
o
®3
(<]
(o}
n
2

100
Block Size

Fig. 2: Speed-up Factor versus Block Size

4.0
— Dy
D,
35 . o
T
453.0 —— Ds
@ p
o)
2,2.5 f
ot
ko]
$20
o
%)
1.5
1.0 7/
1 5 10 15 20
Burst Size

Fig. 3: Speed-up Factor versus Burst Size

Each “blockchain” that we simulate processes 100k transac-
tions and each simulation is performed 40 times for a given
set of parameters. The figures plot the averages with a 97%
confidence intervals.

B. Speed-up Factor

Figure 2 and Figure 3 show the speed-up factor of the
various dependency distributions, ranging between D; and
Ds. In Figure 2, the x-axis shows block size in number of
transactions, while in Figure 3 the x-axis shows burst size in
terms of number of blocks. In both figures, the y-axis marks
the speed-up factor as measured by the ratio of time-steps
required to execute transactions in our protocol and under
sequential execution. Both share a similar trend where we
observe a decaying increase in speed-up factor with increasing
block size or burst size. Increase in speed-up factor is directly
associated with the extended capacity of a single burst and
therefore correlated with increased parallelism. As block size
and burst size increase the growth of the speed-up factors
diminishes because of the increased number of conflicts among
the transactions within a burst, which requires more transactions
to be rescheduled in following bursts. Finally, we observe that
as the number of transaction dependencies increases from D;

3.5
%
3.0 4
— iy
% D3
©25 o
= — =
- e T —
20
o) N
2,
wn \,_ R
1.5 \"‘\‘._._._,_._.; ---------------------------------
1.0
. 3 6 10

Burst Limit

Fig. 4: Speed-up Factor versus Burst Limit

to D5 the opportunities for parallelization diminish as does the
speed-up factor.

Figure 4 illustrates the speed-up factor with varying depen-
dency distributions where the x-axis shows burst limit in num-
ber of bursts scheduled ahead of execution and the y-axis marks
the speed-up factor as defined above. In general, we observe
a decrease of the speed-up factor with increased burst limit.
With more transactions scheduled in advance, dependencies
must be kept track of across a larger number of bursts resulting
in a greater number of conflicts. Interestingly, we observe an
eventually rising trend in speed-up factor with increasing burst
limit for transaction dependencies sampled from D; and Ds.
When the conflict rate is low, there is less of a chance that new
transactions in later bursts conflict with suspended transactions
from previous bursts. In low conflict scenarios, the optimistic
concurrency control realizes the opportunities for paralleliza-
tion, while still rescheduling conflicted transactions as needed.

C. Efficiency of the Dependency Graph

Recall that Eq. 1 bounds the size of the STDG in terms of
the block size, burst size, and burst limit. For a more practical
understanding of the size of this graph, we test our protocol
under the worst case dependency scenario with a block size of
50, a burst size of 5, a burst limit of 3, and 10k transactions.
The worst case occurs when every transaction depends on
every other transaction within the bound given by Eq. 1; any
greater dependency distance cannot contribute to a conflict
and therefore can never be included in the STDG. With the
above parameter configuration, this means that most of the 10k
transactions have 50 - 5 - 3 = 750 dependencies.

Even with this worst-case dependency structure, our protocol
processes 10k transactions in 66.4 seconds averaged over 5
trials on an 11" generation Intel i3 quad-core CPU. The maxi-
mum amount of memory taken up by the STDG was 22.97 MB.
For comparison, when we draw dependencies from Ds, as op-
posed using the worst case dependency structure, our protocol
processes the 10k transactions in less than 1sec with a graph
size of 0.24 MB. These results show that the size of the STDG
needed for transaction rescheduling is negligible in practice.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a mechanism for parallel execution of
blocks in SoCC model blockchains, which provide a finalized
order of transactions and blocks, whose execution may then
be parallelized independently of the consensus mechanism.
Our mechanism optimistically executes blocks in parallel,
discovers conflicting transactions, and generates a Suspended
Transaction Dependency Graph (STDG). Moreover, we
introduced a scheduling algorithm for rescheduling conflicted
transactions using the STDG. We evaluated our parallel
execution solution and scheduling algorithm with synthetically
generated transactions that reflect observed transaction conflict
rates, achieving 3.5 times faster transaction execution in SoCC
model blockchains on average, even with a conflict rate as
high as 60%.

In the future, we plan to test our approach using real
transaction data. This approach would add complexity to our
experiment by requiring the execution of smart contracts, but
would provide more insight into the exact dependencies among
transactions. It would also be profitable to implement this
approach in a running blockchain, such as Flow, to study
how parallel execution and conflict scheduling fits into the
blockchain network, taking into consideration multi-core pro-
cessors and the division of execution nodes.

REFERENCES

[1] “Number of Blockchain wallet users worldwide from November 2011 to
June 14, 2021,” Accesed on Jul. 2021 [Online]. Available:
https://tinyurl.com/StatistaNumWallets.

[2] “Ethereum Transactions Per Day,” Accesed on Jul. 2021 [Online]. Avail-
able: https://tinyurl.com/ETHTxPerDay.

[3] “Technology Analysis: Cryptocurrency
flourishing but risks linger,” May 2021,
https://tinyurl.com/ReutersETHAnalysis.

[4] T. Dickerson, P. Gazzillo, M. Herlihy, and E. Koskinen, “Adding concur-
rency to smart contracts,” in ACM Symposium on Principles of Distributed
Computing, Jul. 2017.

[5] M. Bartoletti, L. Galletta, and M. Murgia, “A true concurrent model of
smart contracts executions,” in Coordination Models and Languages, Jun.
2020.

[6] P. Anjana, S. Kumari, S. Peri, S. Rathor, and A. Somani, “An efficient
framework for optimistic concurrent execution of smart contracts,” in
Farallel, Distributed and Network-Based Processing, Feb. 2019.

[71 C. Jin, S. Pang, X. Qi, Z. Zhang, and A. Zhou, “A high performance
concurrency protocol for smart contracts of permissioned blockchain,”
IEEE Transactions on Knowledge and Data Engineering, Feb. 2021.

Ethereum is
[Online]. Available:

[8] A. Hentschel, D. Shirley, and L. Lafrance, “Flow: Separating
consensus and compute,” Sep. 2019, [Online]. Available:
https://arxiv.org/abs/1909.05821.

[91 A. Hentschel, Y. Hassanzadeh-Nazarabadi, R. Seraj, D. Shirley,

and L. Lafrance, “Flow: Separating Consensus and Compute -
Block Formation and Execution,” Feb. 2020, [Online]. Available:
https://arxiv.org/abs/2002.07403.

A. Hentschel, D. Shirley, L. Lafrance, and M. Zamski, “Flow: Separating
consensus and compute — execution verification,” [Online]. Available:
https://arxiv.org/abs/1909.05832.

V. Saraph and M. Herlihy, “An empirical study of speculative concurrency
in Ethereum smart contracts,” in Blockchain Economics, Security and
Protocols, May 2019.

D. Reijsbergen and T. Dinh, “On exploiting transaction concurrency to
speed up blockchains,” in IEEE Distributed Computing Systems (ICDCS),
Nov. 2020.

[10]

(1]

[12]

