Cooperative Group Provisioning with Latency Guarantees
in Multi-Cloud Deployments

Sean Yaw, Eben Howard, Brendan Mumey, Mike P. Wittie
Department of Computer Science, Montana State University
Bozeman, MT, USA
{sean.yaw, eben.howard, mumey, mwittie}@cs.montana.edu

ABSTRACT

Given a set of datacenters and groups of application clients,
well-connected datacenters can be rented as traffic proxies to
reduce client latency. Rental costs must be minimized while
meeting the application specific latency needs. Here, we for-
mally define the Cooperative Group Provisioning problem
and show it is NP-hard to approximate within a constant
factor. We introduce a novel greedy approach and demon-
strate its promise through extensive simulation using real
cloud network topology measurements and realistic client
churn. We find that multi-cloud deployments dramatically
increase the likelihood of meeting group latency thresholds
with minimal cost increase compared to single-cloud deploy-
ments.

1. INTRODUCTION

Innovative Internet applications and services increasingly
need low latency communication to deliver a responsive user
experience. Augmented reality, online gaming, video chat,
and real-time language translation are examples, where a
small decline in responsiveness is noticeable to users and
can eventually lead to a drop in usage, resulting in loss of
application revenue [12,18,20,31,40,48]. Many of these ap-
plications include a social component, which allows users to
cooperate in a shared online experience. Recent work shows
the impact of one user’s lag on the Quality of Experience
of all group members in a cooperative game and argues the
need to meet latency requirements for all members [33].

Network latency, a significant component of overall lag,
is difficult to control when it stems from conditions in the
public Internet, such as congestion and circuitous forwarding
routes [22,30]. For example, public network switching over-
head comprises 38% of end-to-end latency [30]. Large-scale
application providers reduce the public Internet’s latency
for their users by distributing private resources (e.g. traffic
proxies, VPNs) closer to users and forwarding application
traffic within private networks [22]. By contrast, small-scale
application providers do not have access to the same scale of
private infrastructure and remain at a disadvantage. This
disparity makes it challenging for small providers to deliver
a comparatively responsive and affordable application expe-
rience for all their users.

Despite this disadvantage, small-scale providers can lever-
age the increasingly geographically dispersed public cloud
datacenters to reduce user request delay. Cloud datacen-
ters are interconnected with low-latency Internet paths and
are often located with large population centers. Small-scale
application providers can employ cloud resources in multi-

PROXY PROXY D
Sms
40ms T
=

R

i

110ms

—
CLIENT HOST

Figure 1: Proxy network used to decrease end-to-
end latency for application client.

cloud deployments to act as a proxy network, thereby lever-
aging its low-latency properties [34,41]. These low latency
paths introduce triangle inequality violations which can be
used in place of default routing paths to reduce end-to-
end delay. Figure 1 shows an example network, in which
proxies reduce path latency. Previous research has demon-
strated how public cloud proxy networks reduce latency be-
tween last-mile networks and distant application datacen-
ters [30,51]. Large cloud providers such as Amazon (AWS)
and Microsoft (Azure) already offer proxy products, but only
within their networks [2,10].

In this paper we address two challenges of cloud proxy
networks:

First, can small-scale application providers deploy multi-
cloud proxy networks in a cost effective manner? Larger
geographical proxy distribution reduces average client path
latency, but also increases cloud rental costs. Further, inter-
datacenter traffic is more expensive when the two datacen-
ters do not belong to the same cloud provider. Despite the
potential for higher costs of widely distributed deployments,
we demonstrate an attractive tradeoff between latency and
cost, even in multi-cloud deployments.

Second, how can small-scale application providers allo-
cate cloud resources to meet latency constraints of cooper-
ative group applications? We propose a method to manage
cloud resources (servers and communication links) to mini-
mize their rental cost subject to a group latency threshold.
Our model considers link and forwarding latency as part of
total latency. We formally define the Cooperative Group
Provisioning (CGP) problem, show that it is NP-hard to
approximate within a constant ratio, and propose an algo-
rithm with good performance on multiple simulated cloud
provider networks.

Our results enable small-scale providers to incorporate
multi-cloud proxy networks as one of the tools in the design
of responsive distributed systems. Our algorithms offer de-
velopers a level of currently unavailable control over end-to-
end network performance and will allow them to design co-

operative group applications with explicit latency/cost bud-
gets, or predictable performance and cost tradeoffs.

The rest of this paper is organized as follows. We discuss
related work in Section 2 and the system model in Section 3.
Section 4 introduces the CGP problem and its complexity
analysis. A greedy approach and considerations for group
churn are presented in Section 5. Experimental results are
presented in Section 6 and we conclude in Section 7.

2. RELATED WORK

Multi-cloud deployments are a rapidly maturing research
area. A growing number of tools make it possible for de-
velopers to build applications that simultaneously use geo-

graphically distributed resources from several cloud providers.

We present the state of scheduling tools and algorithms in
that space to help frame the CGP problem.

2.1 Distributed Resource Management

The continued expansion of cloud computing creates op-
portunities for widely distributed application deployments.
At the same time, standardization of cloud interfaces and
advances in multi-datacenter and multi-cloud application
deployments make it increasingly feasible for small scale
providers to build dynamic proxy networks that adjust to
application demands and network conditions.

Overlay networks have been explored to manage Internet
traffic, with the goal of decreased loss rate [17] and reduced
latency [45]. Our contributions differ from traditional over-
lay networks in that the network we propose (public multi-
clouds) incur rental costs, and resources are chosen based
on aggregate utilization, not on a client-by-client basis. We
show the use of multiple public cloud providers has the po-
tential to lower the latency between users and the host server
for group applications. We also propose an approach to miti-
gate the extra costs of multicloud deployments, to make such
deployments practical.

Large-scale providers developed tools (e.g. Borg, Mesos,
Kubernetes, Omega) for application resource management
within and across their datacenters [32,37,46]. Container
technologies (e.g. Docker, ZeroVM) complement resource
management frameworks to simplify the packaging of ap-
plication code and OS dependencies to make code portable
across heterogeneous cloud resources [7,36]. These technolo-
gies make it possible for small-scale application providers to
achieve both agile vertical and horizontal resource scaling in
multi-cloud deployments.

These solutions, however, do not advise developers on
where and when to instantiate virtual resources. Conductor
considers price, performance, as well as cloud service trans-
fer costs to schedule MapReduce jobs [50]. Meryn considers
computation time and throughput to meet job QoS con-
strains in platform-as-a-service (PaaS) clouds [25]. Quasar
rectifies resource underutilization in Mesos and allows jobs
to specify performance goals, notably in terms of latency [24].
Finally, Sparrow and alsched use a queue balancing method
to schedule small jobs for fast completion [40]. These tools
are not immediately suitable for multi-cloud deployments,
because they do not take into account the cost and network
performance between clients and datacenters. CloudTalk
considers application traffic patterns and computes the cost
of various placement strategies, but falls short of recom-
mending a deployment strategy [43].

Recent multi-cloud deployment work does not address the

costs and communication latency between clients and data-
centers. Paraiso etal. describe a Multi-Cloud-PaaS (MCP)
architecture to manage elasticity across multiple providers
as a backstop to cloud outages [41]. Keahey et al. propose
a system that provides similar elasticity for the software-
as-a-service (SaaS) model in response to application-specific
indicators [34]. Their model considers high network delay as
an indicator of failure, but does not support latency-based
deployment optimization. Work by Franceschelli et al. pro-
vides cost and performance estimates for multi-cloud deploy-
ments based on service layer objectives [28].

Finally, several works provide portals for multi-cloud re-
source management. Alrokayan and Buyya propose Cloud
Web Portal (CWP) as a unified interface to manage VMs
distributed across multiple clouds [15]. CWP scheduler takes
network latency into account, but only in the context of
batch task distribution, for example rendering jobs. Similar
approaches for management of multi-cloud resources include
Delta Cloud, jClouds, and CloudFoundry [4,6,8]. Commer-
cial services in that space include RightScale, enStratus, and
Kaavo [5,9,11]. These architecture are extendible and could
present a useful platform for the deployment of the algo-
rithms presented in this paper.

2.2 Related Optimization Problems

The systems solutions discussed above address the schedul-
ing problem in the cloud, but do not take into account de-
lay between clients and datacenters or group latency con-
straints. The problem of selecting cost effective, latency
constrained paths through a network is similar to the well
studied problem of Constrained Shortest Path (CSP).

In CSP, the single source/destination cheapest path, sub-
ject to a latency bound, is sought. Bernstein introduced a
near linear time PTAS for undirected graphs that approxi-
mates both the path cost and latency [19]. Heuristics have
been developed that have been found to be very efficient in
practice [21]. CSP, however, does not have node weights to
represent datacenter rental costs. Further, datacenter rental
costs are shared by multiple clients, and CSP only considers
single source/destination paths which doesn’t provide the
ability to capture shared costs.

The Constrained Steiner Tree (CST) problem, where the
cheapest Steiner tree is found subject to a latency threshold,
does share costs among multiple source nodes. Heuristics
for the CST problem have been extensively studied since
the early 1990’s [35]. Modern approaches include genetic
algorithms and ant colony optimization [26,29]. CST also
lacks node costs, restricts solutions to trees, and shares edge
costs, which is not a realistic model for cloud networks.

Various efforts consider cloud resource allocation algo-
rithms that respond to network conditions [13,14]. These
approaches do not include multiple groups of clients, nor do
they consider application specific latency thresholds.

3. SYSTEM MODEL

We consider a scenario where groups of clients look to
connect to their other group members through a coopera-
tive application (e.g. a group of friends playing an online
game and a group of colleagues engaged in a video confer-
ence). Each group, and thus each client, has an application
specific latency threshold, as well as a datacenter (DC) serv-
ing as the group’s host. DCs exist in the network that can

forward client traffic, in addition to application hosting.

These clients and DCs are all interconnected with links
that have an associated usage cost and latency. Each DC
has the capability to rent out virtual machines (VMs) that
forward traffic. These VMs have an associated rental cost
and a capacity, given in terms of the number of clients they
are able to service simultaneously.

This network can be modeled as a graph, G = (V, E),
where the DCs and clients are nodes in the graph (V =
D|JC), and the links are edges. At each DC d, there is a
VM rental cost r(d), as well as a VM forwarding capacity
f(d). Each edge e has a rental cost r(e) and latency I(e),
which includes the latency induced at the incident VMs.
Each group (and thus, each client) has a hosting DC, h. € D,
as well as a latency threshold, L.. Many of these parameters
can be time varying and our solution will use the current
values at time of computation.

We make the following assumptions that reflect a broad
range of network application architectures: 1) Each group’s
hosting DC, h., is determined ahead of time and provided
when the group is formed. 2) A VM can forward traffic for
clients in different groups. 3) VM costs are accrued by num-
ber purchased (i.e. r(d) will be charged to cover any number
of clients less than f(d)). 4) Link costs are accrued by the
number of clients using the link (i.e. r(e) will be charged
each time e belongs to any client’s path).

For any path p. from client c to its host h., the rental cost
of ¢’s connection is,

r(pe) = Z r(e)

ecpe

Likewise, the latency of ¢’s connection via path p. is,

pe) = 3 1(e) (M)

eEpe

Given a path p. for each client ¢, the number of VMs that
need to be rented at DC d is,

vy = | Heid € pe}l
f(d)

Finally, the total rental cost for deployment, given a path p.
for each client ¢, is the sum of the clients’ connection costs
plus the cost of each VM instance:

r=3" 1)+ Y v r(d) (2)

ceC deD

4. CGP FORMALIZATION

In this section we formalize the CGP problem and show
it is NP-hard to approximate within a constant factor.

DEFINITION 1. The input for the Cooperative Group
Provisioning (CGP) problem is a set of clients nodes C, a
set of DC nodes D (with cost and capacity values), links be-
tween nodes (with cost and latency values), an assignment of
a host DC, h., for each client, as well as a latency threshold,
L., for each client. The output is a path from each client
to its host such that the latency of each path (equation 1)
is below the latency threshold L. and the total rental cost
(equation 2) is minimized.

THEOREM 1. There exists a constant, 0 < v < 1, such
that the CGP problem has no ~Inm-approzimation, where
m is the number of clients, unless P = NP.

1
0,1
Qe OXY:
Y\ 0.2
Oy o OO,
9

Figure 2: DOMINATING-SET reduction to CGP.

Proor. This result is via an approximation-preserving
reduction from the DOMINATING-SET problem: Given a
graph G = (V, E), find a minimal U C V such that for all
v € V\U, there is a u € U such that (u,v) € E.

Let G = (V,E) be an instance of DOMINATING-SET
where |V| = m. Reduce G to a CGP instance, G, as fol-
lows: Make each node in V have cost 0 and edge in F have
weight = (cost, latency) of (0,1). Add new nodes a and b
with cost 0 and connect them with an edge having weight
of (0,2). Create a set of new nodes, N, by adding a new
node n; with cost 1 for each node v; € V. For each n;, add
an edge that connects to v; with weight of (0,1), and add
an edge that connects to a with weight of (0,0). Figure 2
shows the reduction from DOMINATING-SET to CGP.

Let the set of clients C' = V U b, the latency threshold
for all clients be 2, and every node in G’ have an unlimited
forwarding capacity. A solution to G’ is a subset of N,
rented to connect all members of C' to a. Node a must be
the host for any valid solution to G’ because b € C, and a
is the only node reachable within the latency bound.

Suppose that U = {vi,...,v;} is a dominating set of G.
Since a is the host, every element of U can be reached with
a latency of 1. Since every other element in V' \ U can be
reached in one more (latency of 1) hop, every client can be
reached with at most a latency of 2. Thus, {n,,...,n;} are
the only nodes from N needed to form a solution to G'.

Suppose there is a solution to G’, {n;,...,n;} C N. Since
ny corresponds to an element of V, the subset {n;,...,n;}
represents a unique subset, S = {v;,...,v;} C V. Since the
latency of each path is at most 2, each element of V' must
be in S (latency of 1) or directly connected to a member of
S (latency of 2), making S a dominating set.

Since elements of NV and V are in one-to-one correspon-
dence, the number of nodes selected from N is the same as
the number of nodes in the dominating set, thereby making
the costs equal and the reduction approximation-preserving.
It was shown in [44] that there exists a constant, 0 < v < 1,
such that the DOMINATING-SET cannot be approximated
within a factor of vInm unless P = NP, thus this result
holds for CGP as well. []

5. A GREEDY ALGORITHM

Due to the complexity of the CGP problem, we examine a
greedy strategy for the problem. Our approach is to consider
multiple paths from each client to its host and select the path
that will incur the least additional cost, considering the cur-
rent state of the network (i.e. what VMs are already rented).

The algorithm first generates the k shortest paths (based
on latency) from each client to its host and discards any
paths that are over the latency threshold. For each path,
the path’s cost is determined to be the sum of the link costs
plus the forwarding cost incurred at each intermediate DC.
This forwarding cost depends on the number of forwarding

Algorithm 1 Greedy-k

Algorithm 2 Greedy-k Churn

Step 1 Generate the k shortest (by latency) paths for each
client and put them in P if they are below the
client’s latency threshold.

Step 2 For each path in P, determine its cost by sum-
ming all of its link costs and the cost to forward
an additional client at the VMs along the path.

Step 3 Schedule the least cost path in P, remove all other
paths from P for that client, and update the VM
forwarding numbers along the scheduled path.

Step 4 If P is not empty (i.e. client(s) still need to be
scheduled), loop back to Step 2.

VMs currently owned at each intermediate DC and the ca-
pacity remaining on each VM. The paths are then sorted
based on the total cost. The path with the least total cost
is selected and added to the solution. Any VM purchases
that need to be made to support this path are recorded.
The process then loops back and determines the path costs
for the paths of the remaining clients. This algorithm is
presented as Algorithm 1.

A variety of methods could be used to generate the k
shortest paths in Step 1 of the algorithm. For our evaluation
in Section 6, we chose to use Yen’s algorithm for finding the &
shortest loopless paths [52]. Other shortest path algorithms
could be used, or determining paths based on parameters
other than latency, such as total link cost, are possible.

5.1 Group Churn

Any functional solution to the CGP problem must address
group churn. Instances will not remain static, as groups
come online and go offline routinely. We present a modifica-
tion to Algorithm 1 that accounts for churn. This algorithm
relies on the same underlying principle as Algorithm 1 by
scheduling the cheapest path each iteration, until all clients
have an assigned path. Churn is handled by only schedul-
ing paths to new clients. Legacy clients retain the initially
assigned paths.

When a new group comes online, each client is assigned a
path that it will use for the rest of its connection. As such,
for each moment in time, only the new clients need to be
scheduled and they are done so by Algorithm 1 with consid-
eration given to the already rented VMs. This algorithm is
presented as Algorithm 2.

5.2 Multicast Considerations

The algorithms described so far select paths for unicast
traffic. Some applications, such as video conferencing, send
identical traffic to all group members. It is cost effective to
distribute this traffic in a multicast fashion. Specifically, we
describe a way to use Algorithm 1 to determine multicast
traffic paths.

Algorithm 1 does not need to be modified to support mul-
ticast distribution. Instead, the input graph is modified.
Existing nodes and edges between clients and DCs are not
changed. New intermediate nodes are added to all inter-DC
links. The cost of VMs on the new nodes is the cost of
the link it is added to and the forwarding capacity is infi-
nite. The link now split in two has no cost and one of the

Step 1 Let the solution for timeslot, ¢, start as the solution
to t — 1 (empty if ¢ = 0) and let C be the set of
new clients for t.

Step 2 Remove offline clients from the solution.
Step 3 Execute Algorithm 1 on the set C.

Step 4 Add the solution from Algorithm 1 to the current
solution and return to Step 1 to schedule a new
timeslot.

sublinks has the old latency value.

Since VM costs are shared by all clients being serviced,
we merely push the link cost to a VM on a new node. Then,
when unicast paths are determined, they will leverage the
existence of other traffic in the model (by way of already
rented VMs). This enables link costs to be shared when
identical data is transferred from host to clients.

6. EXPERIMENTAL RESULTS

In this section we evaluate the effectiveness of our greedy
algorithm from Section 5 in meeting the QoS needs of coop-
erative group applications in multi-cloud deployments. We
base our evaluation on an extensive set of simulations on
networks configured with connectivity and pricing models
of Amazon, Microsoft, and Rackspace cloud providers. To
avoid comparisons, we anonymize the identity of these ser-
vices in the presented results.

The simulation model used has been parametrized to re-
flect real-world connectivity between datacenters, as well as
between datacenters and users in last-mile networks. We es-
timate the latency between datacenters as their great-circle
(orthodrome) distance divided by half the speed of light to
account for switching delay and coiled fiber in fiber optic
conduits [49]. Latency between two datacenters that be-
long to the same cloud provider is assumed to be lower,
because traffic traverses VPNs, rather than the public In-
ternet. As such we only divide the distance of those links
by two-thirds the speed of light. We assume the throughput
of inter-datacenter links to be infinite, as their capacity is
orders of magnitude larger than simulated traffic flows.

Server and bandwidth costs were taken from the adver-
tised parameters of three top cloud service providers in the
US [16,38,39,42]. The link pricing scheme in our models re-
flects the lower cost of traffic between two datacenters that
belong to the same provider.

We randomly sample user locations from the locations and
relative population sizes of the 100 most populous US cities.
The latency between these clients and datacenters is based
on distance plus last mile latency of access networks in a
user’s city based on FCC data [27]. These values contain
the effect of low bandwidth and traffic congestion in access
networks. All latency values include the latency induced by
the VMs and were corroborated through direct ping mea-
surements from cloud providers to random hosts (location
verified with IP to location database) in last-mile networks
of the 100 most populous US cities. To randomize the la-
tency of different hosts from the same city, we assume our
latency measurement represents the median latency in that

55
=
I
- »—
-t 0.8
15 - ® Provider-1 - o @ 50

. 2 Provider-2 —%— E

—~ T g6 Provider-3 & >
3 o Y Mixed & <3 Provider-1 - ©
2 =2 s Provider-2 ——
= i ° ©----- o----- O -0 Q- - o] - Provider-3 --&--

3 — o 0.4 ® Mixed &

g o

o - 3 o
. 5]] a]) 8 2 a0l -8
05 Greedy-1 & 02r @~ . <40 A A A A A A N

- Greedy-3 —6—
* Greedy-6 4
'y Greedy-7 - x- or & A A A A A
0 35

10 20
Number of Groups

(a) k values: cost vs. num groups

05 7 15
Expected Arrival Rate (groups/minute)

(b) Game churn: failure vs. arrival rate (c) Game churn: latency vs. arrival rate

2 0 2

05 1 15
Expected Arrival Rate (groups/minute)

55

o 16} o °

5 6.] [o}

2 O --as 2 .

S 14f — G R “ # ® s 4

3 B 50 3

212t £ H

5 g 2o

£ 17 . Provider-1 - © g g;gz:g:i; N < Provider-1 - &

Sosld \ Provider-2 —— © 451 Providers o & o Provider-2 —x

2 =\ Provider-3 & - Mixed & 3 4 Provider-3 &

S o6t g 3

pe o [— B B T D T S B a e

= 04r <407 A A A A A A €

g 8 2

502} 5

o a | B
0 35

10

o

0.5 1 1.5
Expected Arrival Rate (groups/minute)

05 1 15
Expected Arrival Rate (groups/minute)

2 00 2

05 - 1 15
Expected Arrival Rate (groups/minute)

(d) Game churn: cost vs. arrival rate (e) Video churn: latency vs. arrival rate (f) Video churn: cost vs. arrival rate

Figure 3: Performance of greedy algorithm for static instances, and churn of game and video chat groups.

city, which we then increase, or decrease based on the dis-
tribution of FCC measurements of latency for different link
access speeds.

We simulate groups of clients utilizing two types of ap-
plications. The first is a gaming application with a latency
threshold of 80 ms, group size of 12, and fixed session dura-
tion of 10 minutes [3,23]. The second is a video chat applica-
tion with a latency threshold of 200 ms, group size of 10, and
an exponentially distributed duration [1,47]. To calculate
VM proxy capacity for these applications, we empirically
evaluated the number of sessions that can be proxied by a
VM on each data center without queuing request traffic. To
calculate the traffic costs we measured the mean volume of
flows in these applications using pcap captures.

Finally, we performed simulations on gaming groups with-
out any churn to determine the optimal number of paths per
client for which to configure Algorithm 1. The simulation
was the average of ten iterations on instances of between
one and twenty groups. The number of paths considered
was one, three, six, and seven. Results of this simulation are
shown in Figure 3(a). Using three paths results in an aver-
age cost savings of 40% compared to using only one path.
Using six or seven paths resulted in an average cost savings
of 50% over a single path, and diminishing marginal benefits
over three paths. We decided to run the churn simulations
with the number of paths for Algorithm 1 set at three.

6.1 Group Churn Evaluation

This section details the performance of Algorithm 2 with
varying degrees of group churn and different cloud service
provider networks over a 24 hour period. Group churn is
modeled as group arrival times fitting a Poisson process.
The degree of churn is manipulated by the expected arrival
rate of groups, in groups per minute. Group duration is
subject to the parameters discussed earlier.

We considered four different cloud solutions for group pro-

visioning. Provider-1, 2, and 3 are the three top providers in
the US. When Provider-n is referenced, only that provider’s
network can be used. The fourth solution, Mixed, represents
a multi-cloud deployment on Providers 1, 2, and 3.

Figure 3(b) shows failure rate of groups meeting their la-
tency threshold (80ms for gaming) as a function of group
arrival rate. The Mixed network is the only one that had a
zero percent failure rate. Since the greedy algorithm deter-
mines shortest paths based on latency, it is guaranteed to
find a path under the latency threshold, should one exist.
Thus, the failure rate is not artificially high due to peculiar-
ities of Algorithm 2. The decrease in failure rate is related
to the number of DCs in the network. More geographically
distributed multi-cloud deployments provide more opportu-
nity for proxies to meet latency thresholds. Figure 3(b) also
indicates the advantage to employing proxies. In our model,
clients are able to connect to an application host in a cloud
DC without using proxies. Thus, any failures seen when
using proxies would also be failures without proxies.

Figure 3(c) shows the average client latency for increas-
ing churn rates. As expected from the failure rate results,
the networks that experience higher failure rates also have
higher average latencies. The curves are mostly flat, sug-
gesting that the average latency for each provider is more
dependent on the location of datacenters than it is on the
number of active groups. The independence of latency from
group churn is due to the fact that even a small number of
active groups leads to VMs being rented at most datacenter
locations, thereby keeping the average latency stable.

Figure 3(d) shows the percent of cost savings of Provider-1,
2, and 3 compared to the Mixed network over a 24 hour
period with increasing churn rates. The cost savings of us-
ing a single-cloud deployment starts at at most 1.6% and
decreases with increasing churn rate, which points to prof-
itability of multi-cloud deployments. The small variability of
cost savings is due to pricing similarities between providers,

geographic proximity of DCs from different networks, and

consistent selection of similar resources.

This result sug-

gests that for nearly the same cost, latency thresholds can
be met with much greater reliability by utilizing multi-cloud
deployments.

Results of churn simulations on video chat groups are sim-
ilar to the results for game groups. Failure rate was zero for
all networks due to the high latency threshold of 200 ms.
Even without any latency failures on the single provider
networks, Figure 3(e) shows that the average latency is still
lower with a multi-cloud deployment. Further, Figure 3(f)
shows that the cost savings of using a single-cloud deploy-
ment is low and decreases with the increasing rate of churn.

7.

CONCLUSIONS

We introduced the CGP problem and showed it is NP-hard
to approximate within a constant factor. We presented a
versatile greedy approach that is applicable for static in-
stances, realistic group churn, and applications that are able
to leverage multicast traffic. This approach has shown to be
efficient in realistic simulations and has the guarantee of
finding feasible solutions if they exist.

Simulations on current US cloud providers indicate that
multi-cloud deployments are cost effective in reducing la-
tency. Larger numbers of DC locations lead to greater se-
lection of resources to rent, which reduces average latency
and group failure rate (tail latency). Our simulations have
shown that leveraging these larger cloud networks can be
expected to not adversely affect the cost of application de-
ployment.

8.
(1]

2]
3]
(4]
(5]
[6]
(7]
(8]

(9]
(10]

(11]
(12]

(13]

14]

(15]

(16]

REFERENCES

ITU-T G.114.
http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-
REC-G.114-200305-1!!PDF-E, May 2003.

AWS Direct Connect.
http://aws.amazon.com/directconnect/, Dec. 2014.

Call of Duty: Ghosts - Multiplayer. http:
//www.ign.com/wikis/call-of-duty-ghosts/Multiplayer,
Apr. 2014.

Cloud Foundry. http://cloudfoundry.org/, Dec. 2014.
Dell Cloud Manager. http://enstratus.com/, Dec. 2014.
6-cloud. http://deltacloud.apache.org/, Dec. 2014.
Docker. http://www.docker.com/, Dec. 2014.

jClouds. http://jclouds.apache.org/, Dec. 2014.

Kaavo. http://kaavo.com/, Dec. 2014.

Microsoft Azure ExpressRoute. http:
//azure.microsoft.com/en-us/services/expressroute/,
Dec. 2014.

RightScale. http://rightscale.com/, Dec. 2014.

M. Abrash. Latency the sine qua non of AR and VR.
http://blogs.valvesoftware.com/abrash/latency-the-
sine-qua-non-of-ar-and-vr/, Dec. 2012.

M. Alicherry and T. V. Lakshman. Network aware resource
allocation in distributed clouds. In IEEE Infocom, Mar.
2012.

F. AlQayedi, K. Salah, and M. Zemerly. Network-aware
resource allocation for cloud elastic applications. In
Electronics, Circuits, and Systems (ICECS), Dec. 2013.
M. Alrokayan and R. Buyya. A Web portal for
management of Aneka-based MultiCloud environments. In
Australasian Symposium on Parallel and Distributed
Computing, Jan. 2013.

Amazon. Amazon EC2 pricing.
http://aws.amazon.com/ec2/pricing/, July 2014.

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

[25]

[26]

27]

(28]

29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris.
Resilient overlay networks. In ACM SOSP, Oct. 2001.

N. Beighton. The human cloud: Wearable technologys
impact on society. http://www.rackspace.com/blog/the-
human-cloud-wearable-technologys-impact-on-society/,
June 2014.

A. Bernstein. Near linear time (1 + ¢)-approximation for
restricted shortest paths in undirected graphs. In
ACM-SIAM SODA, Jan. 2012.

K.-T. Chen, P. Huang, and C.-L. Lei. Effect of network
quality on player departure behavior in online games.
Parallel Distributed Systems, 20:593—-606, May 2009.

S. Chen, M. Song, and S. Sahni. Two techniques for fast
computation of constrained shortest paths. IEEE/ACM
ToN, 16(1):105-115, Feb. 2008.

Y. Chen, S. Jain, V. K. Adhikari, and Z.-L. Zhang,.
Characterizing roles of front-end servers in end-to-end
performance of dynamic content distribution. In ACM
IMC, Nov. 2011.

M. Claypool and K. Claypool. Latency and player actions
in online games. CACM, 49(11):40-45, Nov. 2006.

C. Delimitrou and C. Kozyrakis. Quasar: resource-efficient
and QoS-aware cluster management. In ASPLOS, Mar.
2014.

D. Dib, N. Parlavantzas, and C. Morin. Meryn: Open,
SLA-driven, Cloud Bursting PaaS. In ACM Workshop on
Optimization Techniques for Resources Management in
Clouds, June 2013.

R. Fabregat, Y. Donoso, F. Solano, and J. Marzo. Multitree
routing for multicast flows: A genetic algorithm approach.
In Catalan Conference on Artificial Intelligence, Oct. 2004.
FCC. Measuring Broadband America - 2014.
http://www.fcc.gov/reports/measuring-broadband-
america-2014, June 2014.

D. Franceschelli, D. Ardagna, M. Ciavotta, and

E. Di Nitto. Space4cloud: A tool for system performance
and costevaluation of cloud systems. In Workshop on
Multi-cloud Applications and Federated Clouds, Apr. 2013.
K. Ghoseiri and B. Nadjari. An ant colony optimization
algorithm for the bi-objective shortest path problem.
Applied Soft Computing, 10(4):1237-1246, 2010.

I. Grigorik. Latency: The new Web performance
bottleneck. http://www.igvita.com/2012/07/19/1atency-
the-new-web-performance-bottleneck/, July 2012.

O. Hansen. The biggest problem in Augmented Reality:
Latency.
https://identifeye.wordpress.com/2013/01/03/the-
biggest-problem-in-augmented-reality-latency/, Jan.
2013.

B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. Katz, S. Shenker, and 1. Stoica. Mesos: A
platform for fine-grained resource sharing in the data
center. In USENIX NSDI, Apr. 2011.

E. Howard, C. Cooper, M. P. Wittie, S. Swinford, and

Q. Yang. Cascading impact of lag on user experience in
multiplayer games. In ACM NetGames, Dec. 2014.

K. Keahey, P. Armstrong, J. Bresnahan, D. LaBissoniere,
and P. Riteau. Infrastructure outsourcing in multi-cloud
environment. In Workshop on Multi-cloud Applications and
Federated Clouds, Sept. 2012.

V. Kompella, J. Pasquale, and G. Polyzos. Multicast
routing for multimedia communication. IEEE/ACM ToN,
1(3):286-292, Jun 1993.

V. Lindberg. ZeroVM: smaller, lighter, faster.
http://www.rackspace.com/blog/zerovm-smaller-
lighter-faster/, Oct. 2013.

C. Metz. Google open sources its secret weapon in cloud
computing.
http://www.wired.com/2014/06/google-kubernetes/,
June 2014.

Microsoft Azure. Data transfers pricing details.

(39]

[40]

[41]

42]

[43]

[44]

[45]

http://azure.microsoft.com/en-
us/pricing/details/data-transfers/, July 2014.
Microsoft Azure. Virtual machines pricing details.
http://azure.microsoft.com/en-
us/pricing/details/virtual-machines/, July 2014.

K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica.
Sparrow: distributed, low latency scheduling. In ACM
SOSP, Nov. 2013.

F. Paraiso, P. Merle, and L. Seinturier. Managing elasticity
across multiple cloud providers. In Workshop on
Multi-cloud Applications and Federated Clouds, Apr. 2013.
Rackspace. Managed VMs and bare-metal servers in the
cloud. http://www.rackspace.com/cloud/servers/, July
2014.

C. Raiciu, M. Ionescu, and D. Niculescu. Opening up black
box networks with CloudTalk. In USENIX Hot Topics in
Cloud Computing (HotCloud), June 2012.

R. Raz and S. Safra. A sub-constant error-probability
low-degree test, and a sub-constant error-probability PCP
characterization of NP. In ACM STOC, May 1997.

S. Savage, T. Anderson, A. Aggarwal, D. Becker,

N. Cardwell, A. Collins, E. Hoffman, J. Snell, A. Vahdat,
G. Voelker, and J. Zahorjan. Detour: informed internet

[46]

(47]

(48]

[49]

[50]

(51]

[52]

routing and transport. Micro, IEEE, 19(1):50-59, Jan 1999.
M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and

J. Wilkes. Omega: Flexible, scalable schedulers for large
compute clusters. In ACM EuroSys, Apr. 2013.

Skype. How much bandwidth does Skype need?
https://support.skype.com/en/faq/FA1417/how-much-
bandwidth-does-skype-need, June 2014.

P. Tarng, K. Chen, and P. Huang. On prophesying online
gamer departure. In ACM NetGames, Nov. 2009.

I. Vazquez-Abrams. Stackexchange superuser.
http://superuser.com/questions/289978/whats-the-
minimum-network-latency-for-a-1000-km-connection-
using-optic-fibers, May 2011.

A. Wieder, P. Bhatotia, A. Post, and R. Rodrigues.
Orchestrating the deployment of computations in the cloud
with Conductor. In USENIX NSDI, April 2012.

M. P. Wittie, V. Pejovic, L. Deek, K. C. Almeroth, and
B. Y. Zhao. Exploiting locality of interest in online social
networks. In ACM CoNEXT, Nov. 2010.

J. Y. Yen. Finding the k shortest loopless paths in a
network. Management Science, 17(11), July 1971.

