
Vadim A. Slavin
Michael Polyakov

Mark Quilling
LOCKHEED MARTIN SPACE SYSTEMS

SUNNYVALE, CA

Mike Wittie
University of California

Santa Barbara, CA
Matthew Andrews

Lucent Technologies
Murray Hill, NJ

ABSTRACT
We propose a novel, robust MANET protocols evaluation
framework which enables researchers to track
performance metrics and evaluate theoretical predictions.
This framework speeds up the research and development
spirals, provides faster feedback to algorithm developers
and closes the loop between theory and qualitative
analysis of the protocols' performance. Our test and
evaluation effort is divided into two parts. Rapid
prototyping and evaluation of proposed algorithms is
performed in the MATLAB environment. These tools
enable us to numerically analyze performance,
capabilities, convergence, and robustness of new
algorithms. The second higher fidelity approach is the test
and evaluation framework developed in OPNET
simulation environment. Its unique features are the novel
application and evaluation process including
sophisticated statistics collection and an event logging
architecture.

INTRODUCTION
We propose a novel, robust MANET protocols evaluation
framework as part of our Mobility-Aware Resource
Coordination for Optimization of Network Infrastructure
(MARCONI) effort to research, develop and evaluate a
revolutionary Mobile Ad Hoc Network (MANET)
prototype. The project requires radical rethinking of a
wireless networking stack and has already led to
prototyping and evaluation of new protocols. This
collective effort spans a distributed team of researchers
working together to translate groundbreaking theoretical
research into significant performance gain over existing
state of the art MANET.

In order to track our performance metrics and evaluate
theoretical predictions, we have created an evaluation
framework that speeds up the research and development
spirals, provides faster feedback to algorithm developers
and closes the loop between theory and qualitative
analysis of the protocols' performance. Our test and

evaluation effort is divided into two parts. Rapid
prototyping and evaluation of proposed algorithms is
performed in the MATLAB environment. Our tools
developed in MATLAB enable us to numerically analyze
performance, capabilities, convergence, and robustness of
new algorithms.

The second higher fidelity approach is the test and
evaluation framework developed in OPNET simulation
environment. Its unique features are the novel application
and evaluation processes we developed. These tools are
independent of the type of networking stack being tested
and thus allow for a direct comparison of various protocol
iterations. The application module harness uses a scenario
document easily created and imported into the simulation
to allow for a flexible way of describing application
scenarios from the tactical user’s perspective. The
statistics collection and logging framework we developed
speed up the debugging cycle and help in evaluating the
performance and the behavior of the new protocols.

PREVIOUS APPROACH
Network protocol development is a complex process
riddled with design and implementation challenges.
Assuring protocol correctness in all cases requires the
programmer to not only understand the complexities of
different parts of a protocol, but also gain insight into the
interaction of the protocol within the network stack [1].

Furthermore, a distributed protocol development effort,
while already challenging in its design stage, can be even
harder during implementation and debug stages.

Traditional software development methods, while
successful at bringing the networking community a
number of popular protocols, are not uniformly efficient in
all possible types of development projects [2].

Typically, once a new protocol has been developed it
needs to be simulated in a network simulation tool to
evaluate its correctness and efficiency. OPNET Modeler is
the industry standard for network modeling and

 1 of 9

MOBILE AD HOC NETWORKS (MANET) PROTOCOLS EVALUATION FRAMEWORK

simulation. It is based on a series of hierarchical editors
that directly parallel the structure of real networks [3].

The standard method for processing performance data in
OPNET involves graphical depictions of numerous
statistics collected during the running of a simulation.
Although statistics can give us coarse information about
the performance of a given set of protocols, they cannot
say anything about why a given protocol performed as
such or where the problems are.

One other complication is the distributed nature of
attributes defining a simulation. A scenario is described by
attributes scattered over process, node, scenario and global
settings all acting together.

The application process module used in most standard
models for packet-level traffic simulation. It is inflexible
and strongly coupled with other standard process modules
that many users choose to replace.

Finally, OPNET’s basic statistics gathering architecture is
insufficient to evaluate and explain large scale behavior.
Though it offers a powerful event driven debugger, as the
number of simulated nodes rises, it becomes very hard to
keep track of events. It is difficult to store and compare
events from different runs, or to customize their format [4,
5]. Although OPNET does allow one to generate a visual
plot of various events, we found the OPNET capabilities
insufficient.

The alternative analytic tool available to programmers is a
protocol behavior log implemented as a series of console
or file printouts. While useful for quick implementation
checks, this approach is not viable for solving more
complex problems due to size limitation on most
platforms. Additionally, console output is difficult to
search, and cannot be reused.

Our project started out like many other advanced network
research projects. A network simulation tool (we chose
OPNET) was an essential piece in our design. We
assembled other tools for future debugging and evaluation
that are mentioned above. However, having found the
traditional way inefficient for our goals we invested our
efforts in designing a more developed and streamlined
process for simulation, evaluation, and debugging our
protocols and algorithms. We believe that our approach
has lead to a shorter development and evaluation cycle
with a smaller team.

RAPID PROTOTYPING
The MATLAB environment provides an interface to easily
script a prototype algorithm. Using this tool we can

quickly code the approximation of algorithms derived
from the theory and evaluate how well they perform [6].
The main purpose of this effort is to provide a numerical
basis of confidence by solving the underlying optimization
problem which guides further protocol development.

When creating the theory that underlies a network stack
design we start with the statement of NUM (Network
Utility Maximization) optimization problem which
encapsulates the network utility and constraints. Our
objective is to maximize the user perceived utility subject
to the constraints on resources. We can specify, through
optimization decomposition (OD) [7], an optimization
problem for each component throughout the network
stack. These optimization problems define coupling and
information sharing requirements between different
elements of the network. The downfall is that most of
these problems are either NP hard or need to be solved in a
centralized manner: thus our need for decentralized
approximate solutions. There are many ways (heuristics)
to find a solution to these problems; our aim is to find the
one that does it the best. We can easily test and modify
existing and new algorithms until we find one that suits
our needs. This ability is very useful and helps us find
algorithms that perform quite well.

The framework we developed consists of a main loop that
steps though events. Each event can consist of position
change, flow arrival or departure, or change in QoS. For
each of these events we run an inner loop, which is on a
small time scale, to simulate the packet exchange across
the network. Throughout this inner loop we assume the
node positions and applications remain fixed.

For every event there are several modules that get
executed. The first one is responsible for the network
scenario, spatial distribution of nodes and their mobility. It
also describes the types of flows that enter the network
and their destinations. These are scriptable parameters
which can be adjusted.

The rest of the modules are responsible for implementing
four major components: source rate control, routing,
power control, medium (channel) access and flow
scheduling. The choice of schemes that implement the
above processes determines the type of network stack we
simulate.

The flows are simulated not as discrete packet flows but as
continuous streams. This approximation allows us to
model the system quicker and test the concepts which are
the foundations of the new algorithms.

 2 of 9

We also compare the performance of a new algorithm such
as priority based random access. We can show numerically
the potential gains we are likely to get by implementing
such an algorithm in OPNET. Because of the low fidelity
of MATLAB we will most likely see less improvement
when implemented in OPNET but it is a reasonably good
predictor.

We visualize our results as graphs of various parameters
of the network as compared to the control set of
components. We implemented a basic 802.11 scheme for
each of the variable components in our framework to
gauge the improvements derived from our theory. For
every simulation, we can run our both sets of components
for the same flow and node distribution and mobility
scenario. [Fig 1]

Fig. 1. MATLAB Framework Simulation Results.
Here, total network utility (left column) and unicast source rates
(right column) network parameters are compared for a simulation
using our set of components (top row) vs a control stack (bottom
row). Clearly, we see improvement over the control stack. The
center graph is the routing topology visualization at some time
step. The blue dots are nodes and each colored path marks a route
for a different flow.

Another important capability, not related to simulating the
network stack, is the visualization of topology, routing,
and mobility. Our MATLAB framework is able to
interface with OPNET and present routing and link
visualization in a user friendly manner. We are able to
import this data from OPNET simulation and visualize
connectivity and how the OPNET routing protocol
implementation behaves in the context of node mobility.
This capability has been very useful in verifying our
routing algorithms. [Fig 5]

OPNET SIMULATION ENVIRONMENT

 As we built our framework, we added several components
to the simulation’s suite of input parameterization and
output visualization tools. We augmented OPNET data
collection mechanism with a logging infrastructure to
systematically collect non-numeric data and introduced
global statistics specific to the wireless application flow
tracking. While OPNET provides a sophisticated
application process that can be used with its standard node
models, we were compelled to implement our own
lightweight xml-driven application process that targets the
setup of application flows from the perspective of the
tactical user.

A.Logging and event data collection
The OPNET framework did not provide a method of
collecting non numeric data in an organized fashion. Out
of the box it supports a combination of statistics
(recording some value through time) and a variety of
debug print functions. The OPNET debugger in concert
with the Microsoft Visual Studio environment allowed
detailed tracing of behavior, potentially stepping through
code line by line, a method very effective for debugging
code. However, these capabilities are less useful in
analyzing algorithm and protocol behavior as a whole,
particularly in large scenarios, for which a larger-scope
view is desirable.

Our logging infrastructure provides a powerful way for
any module in the simulation to report important events –
whether this is route table changes, traffic flow beginning
or something more fine grained. Unlike statistic collection
it is able to collect arbitrarily complex event objects. Each
event combines relevant information described by the
developer: time stamp, initiator node id, packet id, or any
other atomic piece of information relevant to the event.

From software development perspective, the logger class
is a fully standalone module which can be defined by a
test and evaluation team independent of the code to be
analyzed. The responsibility of logging events is left up to
the protocol developers who use the logger features via a
single static function throughout their code.

Once created and logged (via a static initialization
function), the events can be outputted into a variety of
formats: a command window output stream, a plain text
file or an XML file format, or an excel spreadsheet in
tabular form. There is a robust inheritance hierarchy in
place which allows sub-classing of logging events. For
example, a general routing event can have other children:
route discovery initiation event, a node’s routing table

 3 of 9

update event, routing packet receipt event, etc. This
allows complex filtering to allow the experimenter to
focus on particular types of events. This can be done in
one central location regardless of the complexity of the
rest of the system.

The power of such flexible output is apparent. Once the
events are placed into spreadsheets, they can be further
filtered and sorted by time, or by any other field. With the
output of just one simulation the data can be analyzed
chronologically then per wireless node, etc.

B.Application process with xml scripting of
scenarios

To test network behavior at the packet level of granularity,
OPNET provides a rich application module, able to
simulate a dozen known application traffic patterns, as
well as custom applications. While we initially pursued
this line, several problems emerged.

Our project relies on flexibility of simulating various
traffic flow patterns to test many specific features of the
new protocols from the perspective of the end user. For
example, ‘a voice flow at 8kbps should be sent with high
urgency and quality of service demands to a group of
receivers’.

Fig. 2. MARCONI Application Harness.
The pictured networking stack is modeled in OPNET and
includes our own application process. The plug-an-play interface
of the application harness enables integration with different
stacks to be evaluated against each other’s performance.

In OPNET native application module, this requires
translating application behavior into traffic patterns,
changing application parameters accordingly and saving
these profiles for use by other nodes – a cumbersome
process. Modifying these patterns might be a time
consuming task even for a small behavior change.

In addition, OPNET’s application module is tightly
integrated with other modules and processes in the stack
model which makes it virtually inextensible. Because our
project required a complete overhaul and rewrite of the
existing network stack pieces, the standard application
module was not suitable.

More importantly, however, is OPNET’s native
application’s inability to describe application flows from
the perspective of the network end user. OPNET requires
the developers to introduce an extra step of translating
application flow behavior into a traffic pattern description.
The theory and the design of our project rely heavily on
the specifications of the needs of the tactical user.
Therefore, the evaluation of the project requires the same
approach.

As a solution, we designed a more light-weight application
suite as an OPNET module. An application dispatcher
interfaces with the protocol lower in the stack, the
transport protocol [Fig. 2], and starts child processes for
applications when necessary. We currently support the
following application types:

1. File Transfer: transferring files of specific size
There are no constraints on the service, and
throughput and delay are allowed to vary arbitrarily,
as long as the file takes to be delivered. The
initiator side chooses a file size to transmit and
schedules itself to transmit packets periodically
until done. The receiver simply records them.

2. Chat: sending text bursts
The chat application transmits two-way low data
rate bursty traffic. We script the initiator task to
start at a particular time and the receiver starts
responding with its own flow of data once it
receives the first packets thus initiating a chat
conversation.

3. Voice: sending VoIP
This inelastic application implements a non-trivial
rate constraint and specifies a tight delay constraint.
Its operation and traffic patterns are similar to chat,
though of higher bandwidth.

 Application profile description has been moved into an
xml script read by the dispatcher at runtime. Because, the
XML script conforms to an xml schema we designed, the
process of composing an xml script is thus very interactive
when an xml editing tool is used. Most common xml
editing tools provide predictive contextual attribute
suggestion, so when a user starts typing the xml script, the

 4 of 9

xml tool will suggest the allowed attributes depending on
the context.

The script schema allows us to design application profiles
to mimic the behavior of each application that a tactical
user (i.e. warfighter, soldier) would be using minute by
minute. In the future, we plan to also model video
streaming applications, short command and situation
awareness messages. Together with the above application
types we already have implemented these are the
applications typically used by a warfighter [9]. For each
simulated user (node) in the network each application type
loads a corresponding (by type) application profile. This
can be the same application profile for all users or an
individual one. Our application scenario description can
thus be very general or very granular depending on the
requirements of the test cases. In addition, this approach
satisfies our desire for a single location where multiple
applications could be easily scripted and their profiles
saved for distribution to others [Fig. 3].

Fig. 3. XML Script example.
Each Application profile describes a particular application’s
sequence of tasks and their behavior as it would be observed by
the user. It can be scripted using a predefined schema to define
the behavior of the simulation as well as provide a clear story to a
human reader. Here the chat application is defined to start a flow
at 15 secs and finish it at 55 secs while sending approximately
(defined by the normal distribution) 100 packets per second each
of size about 600 bits.

C.Global Statistics

Existing OPNET capabilities include a powerful statistic
collection engine. This allows logging of data and its
subsequent statistical analysis. Once we implemented our
novel protocols as process models of the node stack in
OPNET environment we also defined statistics specific to
these protocols.

One of these process models was our application process
model. To support modeling of inelastic (with-constraints)
flows, we have created local and global statistics that keep
track of QoS requirements satisfaction by application
flows of interest.

a. Flow Periods Valid/Invalid: for every custom defined
time period (default is 1 second) the system records the
total number of flows, per flow type, that met (or did not
meet) their requirements

b. Number of Receivers per Flow Type: number of
receivers recorded per flow type at each time step. This
statistics shows when flows were added, refused,
removed or preempted.

c. Goodput Per Flow Type: bit rate of the application
data delivered to the destination as opposed to the bit
rate of the total data transferred.

d. Received Bit Rate that is higher than min throughput
rate.

While by itself these features do not constitute an
innovation they augment our application profile
simulation. The goal of these statistics is to present a clear
picture of the behavior of the application flows within a
system.

Because the statistics are applied to the application
process and describe end-to-end behavior of the traffic
flows, these statistics are not dependent on the underlying
networking stack modeled. Therefore, the same
application harness together with the defined statistics can
be applied to many different networking stacks for a fair
comparison of their efficiency.

THE NEW PROCESS

The tools described above have introduced a considerable
improvement to our research process. We have optimized
the key components of our process: theory validation, unit
testing and debugging, system testing and analysis. Here
we give an example of the new process we have instituted.

The research effort is broken up into several Spirals. Each
spiral includes the development of a new piece of theory,
its analysis and subsequent implementation and testing. At
the end of each spiral we release a code base which we
evaluate to isolate the performance improvements.

The starting point of each Spiral is the draft of theoretical
innovations that would be needed to improve the
performance of the MANET from the perspective of a
tactical user. The performance improvement we consider
would be the improvements in network throughput,
reduced latency, and greater reliability as perceived by the
end user – the war fighter.

 5 of 9

Fig. 4. The ‘waterfall’ process which describes each spiral of our
research project. End user requirements drive the theory behind
our protocols which is then quickly evaluated using the
MATLAB tools we developed. The Protocols and new features
result. A higher fidelity simulation completes the process.

Based on the draft of the new features the theory team
comes back with the high level preliminary description of
the protocols and algorithms as they apply to the general
theory of network optimization as well as our project’s
theoretical assumptions. These algorithms are then
implemented in our MATLAB environment. Our tools
developed in MATLAB allow us to quickly evaluate, at a
low fidelity, the sensitivity, robustness, optimality, and
convergence of these algorithms which potentially drive
the protocol development.

The results of the quick simulation are communicated to
the theory teams and the loop is closed. At this point the
theory team produces more detailed design for the new
protocols or protocol improvements. A more thorough,
higher fidelity protocol implementation then takes place in
our OPNET simulation environment.

We use the tools described above to test each new atomic
piece of functionality before we release the code for
evaluation. We use our application module to quickly
build a few simple test application scenarios using
specifically geared towards showcasing the functionality
we have just implemented. We then run the scenarios in
OPNET and utilize a detailed logging structure that helps
analyzing and debugging new protocols.

The output files of the loggers help share our findings with
other members of our dispersed team to explain a bug in
the code or even a design flaw.

This component test effort not only helps us flush out code
bugs but also discover protocol behavior inconsistencies.
We categorize the problems as implementation bugs or as
design bugs. The logging and tracing outputs can be
shared with our teammates responsible for design. These
materials present a clear picture of protocol events and
serve as bug reporting materials as well.

Another example is our MATLAB tools built specifically
for visualization of Routing topology established as a
result of the simulation run. We are able to replay the
simulation as a movie watching for the available
connectivity and route establishment as a result of this
connectivity [Fig 5].

Once the bugs are fixed we are ready for the final stage of
the spiral – evaluations.

Again we employ our application module to design more
complicated and more realistic scenarios. We design the
node mobility and each node’s application behavior as it
would be seen by each user. Each of the applications
define their own behavior as specific as “send a voice
message at 10 seconds to multicast IP 224.0.0.1” or “reply
to all incoming voice traffic for IP 224.0.0.2”.

Fig. 5. MATLAB Routing Topology Visualization.
Here the links between nodes are shown as thin grey lines. The
thicker color coded lines are routes at a particular time instant.
The tool can be played out as an animation or stepped through
chronologically.

We then apply these application attributes to both the new
network stack we are evaluating and the baseline network
stack we chose at the beginning of the project as our
stating point. We thus run two simulations for each setup.
We then gather local (per node), and global (per network)
statistics outlined above to see what performance gains we
notice as a result of our innovations. Furthermore, specific
features can be turned on and off to pinpoint the
improvement results and tie them to specific innovations.
At our discretion, we also run a third simulation for the
same setup on the networking stack resulting form the
previous spiral. This serves as regression testing and aids
our analysis of features contributing to the performance
gains.

We are confident in the fair comparison to the baseline
stack because we employ the same application harness
with exactly the same setup attributes to run the simulation
for the current stack and the baseline stack.

 6 of 9

The simulation results guide the prioritization of features
for the next spiral because the most effective theoretical
innovations are given higher priority.

CASE STUDY
In this section we will take a representative siege scenario
and evaluate it in MATLAB and then in OPNET. As part
of the MARCONI program objective we are required to
provide “equivalent performance at 10% of the
bandwidth” so our evaluation method has to reflect the
effect of bandwidth on performance. For each scenario we
evaluate the bandwidth is reduced until the stack can no
longer support the load, we call this the saturation
bandwidth. We apply this method to both the MARCONI
stack and a representative Control stack; the ratio is the
percent of bandwidth which we achieved equivalent
performance.

We will consider a scenario consisting of 49 nodes in 7
groups surrounding a target [Fig 6]. We use a nominal
bandwidth of 20 Mhz, a data rate of 54 Mbps, and a
transmit power of 50 mW. This equates to a reach of
about 1.7 km, for each node, at the nominal bandwidth.
The groups are positioned in such a way so that they can
only communicate with adjacent groups.

Fig. 6 Scenario layout

We have set up 6 flows in the network; 2 inelastic video
with a min rate of 500 kbps, 1 inelastic chat flow with a
min rate of 28 kbps, 1 inelastic voice flow with a min rate

of 80 kbps, and 2 elastic file transfers. The network is
simulated for 60 seconds with the flows starting at
different intervals (last flow starts at 30 seconds).

When we evaluate the performance of the stacks on the
above scenario we have two metrics we are concerned
with. The elastic utility is the sum of the logs of each of
the elastic flows (in bps). For inelastic flows the utility is
the sum of the valid flow periods (or brownie points); a
flow receives a brownie point if it reaches it destination at
or above 90% of its min rate.

Fig. 7 MATLAB simulation results, (left) inelastic utility,
(right) elastic utility.

The MATLAB results are shown in [Fig 7]. The inelastic
utility (left) for the MARCONI and Control Stacks are
plotted for each of the respective saturation bandwidths.
The elastic utility (right) shows MARCONI’s elastic
utility plotted against the fraction of the Control stacks
bandwidth. The threshold line (red) indicates the utility
the Control stack achieved at saturation. What these two
plots tell us is that MARCONI was able to carry the
offered load at 2.5 Mhz where the Control needed 16 Mhz.
This equates to equivalent performance at about 16% of
the bandwidth. These are great results but have a few
caveats due to the implicit low fidelity of the MATLAB
simulation tool.

Our next step, once we have verified that the proposed
algorithms perform well, is to determine the changes that
need to be made for a real world implementation. The
performance in MATLAB gives us somewhat of a best
case of how good the proposed algorithms can perform.
Once we move to OPNET modifications and
approximations must be made in order to implement them
as protocols.

 7 of 9

Fig. 8 OPNET simulation results, (left) inelastic utility,
(right) elastic utility.

The OPNET results shown in [Fig 8] are very similar to
those shown in MATLAB. The MARONI and Control
stack were saturated at 4.8 Mhz and 19 Mhz, respectively.
This equates to equivalent performance at about 24% of
the bandwidth. The discrepancies between the elastic
utility plots is due to the fact that in OPNET we used a log
base 10 and in MATLAB we used a natural log.

The MATLAB prediction was better than what we found
in OPNET for a few reason. The first is we don’t model
signaling delay in MATLAB, secondly we are changing
from a flow based model to a packet based model. There
are other, less influential, factors but the above two are the
main contributors to the discrepancies. Because, in some
cases, we are making approximations to the theory derived
algorithms in OPNET it may be beneficial to return to the
MATLAB platform and evaluate the different possible
ways of implementing a specific algorithm. This feedback
loop is much less prominent than the one between the
theory and MATLAB because of the difficulty of
implementation in OPNET.

This case study clearly shows how we use MATLAB to
find and evaluate potential protocol algorithms. These
algorithms are molded in MATLAB till they have the
desired properties to present a feasible real world
implementation. This implementation can then be coded
in OPNET and eventually move to a real radio.

FUTURE WORK
We plan to add a few more capabilities in the near future.
To begin with, we intend to implement a few other
application types: video streaming, short messaging, and
situation awareness messages. One other idea we have
been nurturing is to implement a central run-time
application profile distributor to allow batch mode
execution of multiple simulations with different (e.g.

randomized) traffic profiles. We hope to create a central
modeling process that can allocate application profiles to
nodes at runtime based on a single configuration. This
process will read a master script that describes
probabilistic distributions specifying which nodes may run
which application profiles and with which parameters.
This will greatly enhance our ability to run sensitivity and
confidence tests.

Today's testbeds for distributed autonomous systems tend
to be limited to simulation validation at one extreme or
hardware platform demonstration at the other end. Neither
of these approaches does justice to validation and testing
of the decentralized control and sensing software systems
that lie at the heart of the distributed systems such as
MANETs. A network emulation testbed would provide the
right infrastructure for development and evaluation of the
networked control and sensing software which is at the
core of our MANET stack implementation.

Once we finish our initial research effort, we plan to
implement such a network emulation testbed using a Linux
cluster. One central machine would emulate the wireless
channel and the rest would serve as the virtual nodes in the
network. This would allow us to perform even higher
fidelity evaluation of our concepts, protocols, and
algorithms before moving to a field demonstration.
Particularly, we would be able to test the hardening of the
system: i.e. the robustness to network failures, delays,
instabilities, outages, etc.

CONCLUSION

We have presented our novel, robust MANET protocols
evaluation framework which has enabled us to
dramatically speed up the research and development cycle
of our effort, improve the efficiency of the theory to
protocol cycle iteration, and otherwise increase the
productivity of our research team spanning over 6 public
and private research institutions.

Our rapid prototyping framework in MATLAB has
enabled us to numerically analyze performance,
capabilities, convergence, and robustness of a new
network stack before a more thorough implementation
effort is required.

Our higher fidelity simulation and evaluation framework
has enabled us to test the network stack programmatically
and with higher accuracy. We believe it has enables us to
discover the design and implementation flaws much faster
than otherwise would be possible. This has contributed to
the overall efficiency of our research effort.

 8 of 9

While the true performance of our new algorithms remains
to be proven in emulation and field test environment, we
are confident that we will see significant improvement to
the existing state-of-the-art MANET systems. This outlook
is based on the evaluations of our protocols from the point
of view of the end user – an approach not possible with the
same ease and efficiency before our tools were developed.

ACKNOWLEDGEMENT

This material is based upon work supported by the
Defense Advanced Research Projects Agency, and the
Space and Naval Warfare Systems Center, San Diego,
under Contract No. N66001-06-C-2021. Any opinions,
findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not
necessarily reflect the views of the Defense Advanced
Research Projects Agency for the Space and Naval
Warfare Systems Center, San Diego.

REFERENCES

[1] D. Lapsley, M. Bergamo, “An integrated approach to the
development of wireless network protocols”, in Proc. of the 1st
international Workshop on Wireless Network Testbeds,
Experimental Evaluation Characterization ,Los Angeles, CA,
USA, 2006). WiNTECH '06. ACM Press, New York, NY, 10-17.

[2] David Cavin, Yoav Sasson, Andre Schiper, “On the accuracy of
MANET simulators”, in Proc. of the second ACM international
workshop on Principles of mobile computing, New York, United
States 2002, pp. 38–43

[3] Modeler Wireless Suite for Defense [web page]. 2006 OPNET
Technologies, Inc. Available:

http://www.opnet.com/solutions/network_rd/modeler_wireles
s_defense.html

[4] X. Chang, “Network simulations with OPNET”, in Proc. of the
31st Conference on Winter Simulation: Simulation---A Bridge To
the Future - Volume 1, Phoenix, Arizona, United States, 1999.

[5] Varshney, M., Xu, D., Srivastava, M., and Bagrodia, R., “SenQ: a
scalable simulation and emulation environment for sensor
networks”, in Proc. of the 6th international Conference on
information Processing in Sensor Networks, Cambridge,
Massachusetts, USA, 2007.

[6] Elphick, D., Leuschel, M., and Cox, S., “Partial evaluation of
MATLAB”, in Proc. of the 2nd international Conference on
Generative Programming and Component Engineering, Erfurt,
Germany, 2003.

[7] L. Bui, R. Srikant, A. Stolyar, “Optimal Resource Allocation for
Multicast Flows in Multihop Wireless Network,” unpublished.

[8] P. Gupta, Y. Sankarasubramaniam, and A. Stolyar, "Random-
access scheduling with service differentiation in wireless
networks," Bell Labs., Tech. Rep., May 2004

[9] Joe Leland, Future Army Bandwidth Needs and Capabilities, Rand
Corporation, 2004.

[10] Mark Quilling, “Evaluating NUM and Optimization Theory Driven
Next Generation MANET Architectures,” Military
Communications Conference (MILCOM), submitted for
publication.

 9 of 9

	Vadim A. Slavin
Michael Polyakov
Mark Quilling
Lockheed Martin Space Systems
Sunnyvale, CA
	ABSTRACT
	INTRODUCTION
	Previous Approach
	RAPID PROTOTYPING
	A.Logging and event data collection
	B.Application process with xml scripting of scenarios
	C.Global Statistics

	The new Process
	Case study
	FUTURE WORK
	Conclusion
	Acknowledgement

